a:
Gọi O là trung điểm của AB
Xét (O) có
ΔADB nội tiếp
AB là đường kính
Do đó: ΔADB vuông tại D
=>BD vuông góc AC tại D
Xét (O) có
ΔAEB nội tiếp
AB là đường kính
Do đó: ΔAEB vuông tại E
=>AE vuông góc BC tại E
Xét tứ giác CDHE có
góc CDH+góc CEH=180 độ
=>CDHE nội tiếp
b: Xét ΔCAB có
AE,BD là đường cao
AE cắt BD tại H
=>H là trực tâm
=>CH vuông góc AB tại K
c: Xét ΔAKH vuông tại K và ΔAEB vuông tại E có
góc KAH chung
Do đó: ΔAKH đồng dạng với ΔAEB
=>AK/AE=AH/AB
=>AH*AE=AK*AB
Xét ΔBKH vuông tại K và ΔBDA vuông tại D có
góc KBH chung
Do đó: ΔBKH đồng dạng với ΔBDA
=>BK/BD=BH/BA
=>BK*BA=BH*BD
AH*AE+BH*BD
=AK*AB+BK*BA
=BA^2
a) ....................... =) C, D, H, E cùng thuộc 1 đường tròn.
b) ....................... =) CH ⊥ AB.
c) ....................... =) AH.AE + BH.BD = AB2.
a) Để chứng minh rằng bốn điểm C, D, H, E cùng thuộc một đường tròn, ta sử dụng định lí góc nội tiếp. Theo định lí này, nếu một góc nội tiếp của một đa giác nằm trên cùng một đường tròn, thì các đỉnh của góc đó cũng nằm trên đường tròn đó. Trong trường hợp này, ta có thể chứng minh rằng góc CHD và góc CED là góc nội tiếp của tam giác ABC, do đó bốn điểm C, D, H, E cùng thuộc một đường tròn.
b) Để chứng minh rằng CH vuông góc với AB, ta sử dụng định lí góc nội tiếp. Theo định lí này, nếu một góc nội tiếp của một đa giác nằm trên cùng một đường tròn, thì góc đó và góc ngoại tiếp của nó có tổng bằng 180 độ. Trong trường hợp này, ta có thể chứng minh rằng góc CHD và góc CED là góc nội tiếp của tam giác ABC, do đó tổng của hai góc này bằng 180 độ. Vì góc CHD và góc CED là hai góc bù nhau, nên CH vuông góc với AB.
c) Để chứng minh rằng AH⋅AE+BH⋅BD=AB^2, ta sử dụng định lí Ptolemy. Theo định lí này, trong một tứ giác nội tiếp đường tròn, tích của hai đường chéo bằng tổng tích của hai cạnh đối diện. Trong trường hợp này, ta có thể chứng minh rằng tứ giác AEBD là một tứ giác nội tiếp đường tròn, do đó AH⋅AE+BH⋅BD=AB^2.
Vậy, ta đã chứng minh được a), b), c) như yêu cầu.