Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Minh Bình

Cho tam giác ABC nhọn có góc BAC =45 độ nội tiếp (O).Các đường cao BH. CK cắt (O) tại D và E. c/m

a) góc BOC =90 độ

b) D,O, E thẳng hàng

Nguyễn Lê Phước Thịnh
23 tháng 11 2023 lúc 22:47

a: Xét (O) có

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

\(\widehat{BOC}\) là góc ở tâm chắn cung BC

Do đó: \(\widehat{BOC}=2\cdot\widehat{BAC}=90^0\)

b:

Gọi M là giao điểm của BH với CK

Xét ΔHBC vuông tại H có \(\widehat{HBC}+\widehat{HCB}=90^0\)

=>\(\widehat{HBC}=90^0-\widehat{HCB}\)

=>\(\widehat{MBC}=90^0-\widehat{ACB}\)

Xét ΔKBC vuông tại K có \(\widehat{KBC}+\widehat{KCB}=90^0\)

=>\(\widehat{KCB}=90^0-\widehat{KBC}\)

=>\(\widehat{MCB}=90^0-\widehat{ABC}\)

Xét ΔABC có

\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)

=>\(\widehat{ABC}+\widehat{ACB}=180^0-45^0=135^0\)

Xét ΔMBC có \(\widehat{MBC}+\widehat{MCB}+\widehat{BMC}=180^0\)

=>\(\widehat{BMC}=180^0-\left(\widehat{MBC}+\widehat{MCB}\right)\)

\(=180^0-\left(90^0-\widehat{ABC}+90^0-\widehat{ACB}\right)\)

\(=\widehat{ABC}+\widehat{ACB}=135^0\)

=>\(\widehat{MBC}+\widehat{MCB}=45^0\)

Xét (O) có

\(\widehat{CAD}\) là góc nội tiếp chắn cung CD

\(\widehat{CBD}\) là góc nội tiếp chắn cung CD

Do đó: \(\widehat{CAD}=\widehat{CBD}\)

Xét (O) có

\(\widehat{EAB}\) là góc nội tiếp chắn cung EB

\(\widehat{ECB}\) là góc nội tiếp chắn cung EB

Do đó: \(\widehat{EAB}=\widehat{ECB}\)

\(\widehat{EAB}+\widehat{CAD}=\widehat{ECB}+\widehat{DBC}\)

\(=\widehat{MBC}+\widehat{MCB}=45^0\)

\(\widehat{EAD}=\widehat{EAB}+\widehat{BAC}+\widehat{CAD}\)

\(=45^0+45^0=90^0\)

=>ΔEAD vuông tại A

ΔEAD vuông tại A

nên ΔEAD nội tiếp đường tròn đường kính ED

mà ΔEAD nội tiếp (O)

nên O là trung điểm của ED

=>E,O,D thẳng hàng


Các câu hỏi tương tự
Thủy Phạm
Xem chi tiết
huong duong
Xem chi tiết
huong duong
Xem chi tiết
Ngọc Anh
Xem chi tiết
Ngọc Anh
Xem chi tiết
bảo khang
Xem chi tiết
????1298765
Xem chi tiết
Huỳnh Vũ Khiết Băng
Xem chi tiết
Nguyễn Ngọc Minh Châu
Xem chi tiết