Cho tam giác abc (AB<AC) có 3 góc nhọn nội tiếp (O) và đường cao AD. Đường tròn đường kính AD cắt AB,AC và (O) lần lượt tại E,F,H
a) CMR tứ giác AEDF nội tiếp và AE.AB=Af.AC
b) Vẽ đường kínhAM của (O). Chứng Minh AM vuông góc Ef
c) Tia AH cắt đường thẳng BC tại I. CM I,E,F thẳng hàng
Cho tam giác abc (ab ac) có 3 góc nhọn nội tiếp đường tròn (O;R). Vẽ đường cao be và CF cắt nhau tại H. Các đường thẳng BE,CF lần lượt cắt (o) tại P và Q . Tiếp tuyến tại B và C cắt EF lần lượt tại N,M. đường thẳng MP cắt (o) tại K. Chứng minh ME^2=MK.MP
cho tam giác ABC có ba góc nhọn .Đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại E và D. gọi giao điểm của CE và BD là H
a) chứng minh tứ giác AEHD nội tiếp
b) kẻ AF vuông góc với BC tại F. Chứng minh A, H, F thẳng hàng
c) đường thẳng EF cắt đường tròn tại điểm thứ 2 là K. chứng minh DK// AF
Cho tam giác ABC nhọn, đường tròn tâm O đường kính BC cắt AB tại F bà cắt AC tại E. BE và CF cắt nhau tại H
a/ Chứng minh AH vuông góc với BC tại D và H là tâm đường tròn nội tiếp tam giác DEF
b/ Hai đường thẳng EF và BC cắt nhau tại K; FD cắt EB tại M; ED cắt FC tại N. Chứng minh K, M, N thẳng hàng
Cho tam giác ABC nhọn ( AB<AC), đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại F và E. CF cắt BE tại H.
a) Chứng minh : AH vuông góc BC tại D và H là tâm đường tròn nội tiếp tam giác DEF. (đã làm được)
b) EF cắt BC tại K, FD cắt EB tại M, ED cắt FC tại N. CM: K,M,N thẳng hàng.( khó quá :P)
Cho đường tròn (O). Các đường cao BE và CF của tam giác ABC cắt nhau tại H và cắt (O) lần lượt tại E' và F' (E' khác B và F' khác C).
a, Chứng minh tứ giác BCEF nội tiếp
b, Chứng minh EF//E'F'
c, Kẻ OI vuông góc với BC( I thuộc BC). Đường thẳng vuông góc với HI tại H cắt đường thẳng AB tại M và cắt đường thẳng AC tại N. Chứng minh tam giác IMN cân
Cho tam giác ABC nhọn ( AB<AC) nội tiếp đường tròn tâm O. Vẽ đường cao AH. Gọi D,E lần lượt là hình chiếu vuông góc của H lên AB,AC
a, chứng minh: OA vuông góc vs DE
b, DE cắt BC tại K. CM: KH^2=KB*KC
c, Đường thẳng KA cắt (O) tại F. Gọi I là tâm đường tròn ngoại tiếp tứ giác BCED. Chứng minh: F,H,I thẳng hàng
Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn (O) có M là trung điểm của AB, N là trung điểm của BC. Đường cao hạ từ đỉnh A của tam giác ABC cắt đường tròn (O) tại H và cắt đường tròn (T) ngoại tiếp tam giác BNH tại K. Gọi D và E lần lượt là giao điểm của đường thẳng HN với đường thẳng AC và đường tròn (O) ; F là giao điểm của đường thẳng DK và đường tròn (T). Đường tròn ngoại tiếp tam giác DEF cắt đường tròn (T) tại P và cắt đường thẳng AC tại Q. Chứng minh rằng: ba điểm N, P, Q thẳng hàng.