Cho tam giác ABC nhọn AB< AC . Gọi M N, lần lượt là trung điểm của AB , AC .
a) Biết BC cm = 8 . Tính MN ( đã làm)
b) Lấy điểm D đối xứng với B qua N . Chứng minh tứ giác ABCD là hình bình hành.(đã làm)
c) Kẻ AP ⊥BC , CQ ⊥ AD . Chứng minh P N Q thẳng hàng.
d) Tam giác ABC cần thêm điều kiện gì để tứ giác ABCD là hình vuông?
Cho tam giác abc cân tại A. Gọi D, E lần lượt là trung điểm của AB, BC. Gọi M là điểm đối xứng với E qua D.
a) Chứng minh tứ giác AEBM là hình chữ nhật.
b) Chứng minh tứ giác ACEM là hình bình hành.
c) Kẻ EH vuông góc với AC, K là trung điểm của AH, N là điểm đối xứng với E qua C. Chứng minh NH vuông góc với EK.
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Qua M kẻ ME ^ AB (E Î AB), MF ^ AC (FÎ AC).
a) Chứng minh tứ giác AEMF là hình chữ nhật.
b) Gọi N là điểm đối xứng với M qua F. Chứng minh tứ giác AMCN là hình bình hành.
c) Để tứ giác AMCN là hình chữ nhật thì tam giác ABC cần có thêm điều kiện gì?
Bài 1: Cho tam giác ABC vuông tại A. Vẽ I,K lần lượt là trung điểm của AB,BC. Gọi D là điểm đối xứng của A qua K.
a. Chứng minh tứ giác ABDC là hình chữ nhật.
b. Gọi E là điểm đối xứng của K qua I. Chứng minh tứ giác AKBE là hình thoi.
c. Chứng minh tứ giác AEKC là hình bình hành.
d. Tìm điều kiện để hình thoi AKBE là hình vuông.
Bài 2: Cho tam gaics ABC vuông tại A, đường cao AH, trung tuyến AM. Gọi D là trung điểm AB, lấy điểm E đối xứng với M qua D.
a. Chứng minh: M và E đối xứng nhau qua AB.
b. Chứng minh: AMBE là hình thoi.
c. Kẻ HK vuông góc với AB tại K, HI vuông góc với AC tại I. Chứng minh IK vuông góc với AM
Bài 3: Cho tam giác ABC có ba góc nhọn, trực tâm H. Đường thẳng vuông góc với AB kẻ từ B cắt từ đường thẳng vuông góc từ AC kẻ từ C tại D.
a. Chứng minh tứ giác BHCD là hình bình hành.
b. Gọi M là trung điểm BC, O là trung điểm AD. Chứng minh 2OM = AH
Cho tam giác ABC vuông tại A (AB<AC). Gọi M là trung điểm của BC. Gọi D là điểm đối xứng của A qua M.
a. Chứng minh tứ giác ABDC là hình chữ nhật
b. Gọi H là trung điểm của AB, N là điểm đối xứng của M qua H. Chứng minh tứ giác ACMN là hình bình hành
c. Chứng minh tứ giác AMBN là hình thoi
d. Vẽ DK vuông góc với BC tại K. Gọi I, J lần lượt là trung điểm của BK, AC. Đường thẳng vuông góc với DI tại I cắt BD tại Q. Chứng minh : Q, I, J thẳng hàng
cho tam giác abc vuông tại a (ab<ac) gọi m,n lần lượt là trung điểm của bc,ac
a) chứng minh tứ giác anmb là hình thang vuông
b) gọi d là điểm đối xứng của m qua n, chứng minh tứ giác amcd là hình thoi
Cho tam giác ABC vuông tại A có AB= a. Gọi M, N, D lần lượt là trung điểm của AB, BC,AC.
a) Chứng minh ND là đường trung bình của tam giác ABC và tính độ dài của ND theo a.
b) Chứng minh tứ giác ADNM là hình chữ nhật.
c) Gọi Q là điểm đối xứng của N qua M. Chứng minh AQBN là hình thoi.
d) Trên tia đối của tia DB lấy điểm K sao cho DK= DB. Chứng minh 3 điểm Q, A, K thẳng hàng.
Cho tam giác ABC có ba góc nhọn gọi M,N lần lượt là trung điểm của AB,AC a/ cho biết BC=10 cm. Tính MN b/ kẻ đường cao AH và gọi D là điểm đối xứng với H qua M. Chứng minh tứ giác ADBH là hình chữ nhật
Cho tam giác ABC vuông tại A (AB < AC). Gọi I là trung điểm của cạnh BC. Qua I kẻ IM vuông góc vói AB tại M và IN vuông góc với AC tại N. Lấy D đối xứng I qua N.
a) Tứ giác ADCI là hình gì?
b) Đường thẳng BN cắt DC tại K. Chứng minh D K D C = 1 3 .
c) Cho AB = 12 cm, BC = 20 cm. Tính diện tích hình ADCI