a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(MN=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó: MN là đường trung bình của ΔABC
Suy ra: \(MN=\dfrac{BC}{2}=\dfrac{10}{2}=5\left(cm\right)\)
cho tam giác ABC nhọn (AB < AC).gọi AH là đường cao.M,N,K lần lượt là trung điểm của AB, AC,BC
a) chứng minh tứ giác BMNK là hình bình hành.
b) gọi D là điểm đối xứng của H qua M. chứng minh tứ giác ADBH là hình chữ nhật.
c) gọi I là trung điểm NK. Chứng minh 3 điểm C,M,I thẳng hàng.
Cho tam giác abc cân tại A có AH là đường cao. Gọi M và N lần lượt là trung điểm của AB và AC. Biết AH=6cm, BC=8cm.
a)Tính diện tích tam giác ABC và độ dài cạnh MN.
b) Gọi D là điểm đối xứng của H qua D. Chứng minh tứ giác AHBD là hình chữ nhật.
c) Gọi E là điểm đối xứng của A qua H. Chứng minh tứ giác ABEC là hình thoi.
d) Gọi F là hình chiếu của H lên cạnh BC, gọi I, K lần lượt là trung điểm của HF và CF. Chứng minh EI vuông góc với BF.
Cho tam giác ABC và đường cao AH . Gọi M,N lần lượt là trung điểm của AB,AC. Gọi D là điểm đối xứng với H qua M,E là điểm đối xứng với H qua N. Chứng minh rằng A) tứ giác AHBD là hình chữ nhật B) tứ giác AHCE là hình chữ nhật
cho tam giác abc có 3 góc nhọn ab<ac. Gọi M,N,Q lần lượt là trung điểm của cạnh AB,AC,BC và AH là đường cao của tam giác ABC (H thuộc BC).
a) Chứng minh : Tứ giác BMNC là hình thang
b) Chứng minh: Tứ giác AMQN là hình bình hành
c) Gọi E là điểm đối xứng của điểm H qua điểm M
Chứng minh : Tứ giác AHBE là hình chữ nhật
d) Gọi K là hình chiếu của H trên AB. Gọi I,J lần lượt là trung điểm của AK và BE.
Chứng minh: Góc HIJ = 90
cho tam giác abc có 3 góc nhọn ab<ac. Gọi M,N,Q lần lượt là trung điểm của cạnh AB,AC,BC và AH là đường cao của tam giác ABC (H thuộc BC).
a) Chứng minh : Tứ giác BMNC là hình thang
b) Chứng minh: Tứ giác AMQN là hình bình hành
c) Gọi E là điểm đối xứng của điểm H qua điểm M
Chứng minh : Tứ giác AHBE là hình chữ nhật
d) Gọi K là hình chiếu của H trên AB. Gọi I,J lần lượt là trung điểm của AK và BE.
Chứng minh: Góc HIJ = 90
Cho tam giác ABC vuông tại A, D là trung điểm của BC. Gọi M, N lần lượt là hình chiếu của D trên cạnh AB, AC. a) Chứng minh tứ giác ANDM là hình chữ nhật. b) Gọi I, K lần lượt là điểm đối xứng của N, M qua D. Tứ giác MNKI là hình gì? Vì sao. c) Kẻ đường cao AH của tam giác ABC (H thuộc BC). Tính số đo góc MHN
Bài 1: Cho tam giác ABC (AB<AC). Gọi M,N ,P lần lượt là trung điểm AB, AC, BC.
a) Chứng minh tứ giác BMNP là hình bình hành.
b) Kẻ đường cao AH của tam giác ABC. Gọi K là điểm đối xứng với H qua M. Chứng minh tứ giác AKBH là hình chữ nhật.
c) Chứng minh tứ giác MNPH là hình thang cân.
d) Gọi O là điểm đối xứng với H qua Ab. Chứng minh OK vuông góc với OH.
Cho tam giác ABC có ba góc nhọn (AB < AC) , đường cao AH Gọi M,N,P lần lượt là trung điểm của các cạnh AB, AC, BC, MN, cắt AH tại I
a) Chứng minh I là trung điểm của AH
b) Lấy điểm Q đối xứng với P qua N Chứng minh tứ giác ABPQ là hình bình hành.
c) Xác định dạng của tứ giác MHPN
d) Gọi K là trung điểm của MN, O là giao điểm của CK và PQ , F là giao điểm của MN và QC Chứng minh B,O,F thẳng hàng
Cho tam giác ABC (AB < AC) có đường cao AH. Gọi M, N, K lấn lượt là trung điểm của AB, AC, BC.
a) Chứng minh : tứ giác BCMN là hình thang.
b) Chứng minh : tứ giác AMKN là hình bình hành.
c) Gọi D là điểm đối xứng của H qua M. Chứng minh : tứ giác ADBH là hình chữ nhật.
d) Tìm điều kiện của tam giác ABC để tứ giác AMKN là hình vuông.