(Hơi dài, mình nói sơ sơ thôi nha. Cái hình thì bạn tự vẽ nha.)
Vẽ đường tròn tâm \(O\) ngoại tiếp tam giác \(ABC\) và vẽ đường kính \(AK\) của đường tròn này.
Dễ thấy \(K,H,M\) thẳng hàng và \(BKCH\) là hình bình hành.
Bây giờ vẽ \(AF\) cắt \(\left(O\right)\) tại \(L\).
Do các tứ giác \(ALBC,DEBC\) nội tiếp nên CM được \(FA.FL=FB.FC=FD.FE\).
Và suy ra được \(ALED\) nội tiếp.
Nhận thấy \(AED\) nội tiếp trong đường tròn đường kính \(AH\) nên \(AL⊥LH\).
Mà \(AL⊥LK\) do \(AK\) là đường kính. Vậy \(L,H,K,M\) thẳng hàng.
Tam giác \(AFM\) có đường cao \(AD\) và \(ML\) cắt nhau tại \(H\) nên \(FH⊥AM\).