cho tam giác nhọn ABC (AB<AC) , ba đường cao AD , BE , CF cắt nhau tại H .Goi I là giao điểm của EF va AH .Đường thẳng qua I và song song BC cắt AB ,BE lần lượt tại P và Q
a, CMR tam giác AEF đồng dạng với tam giác ABC
b, CM IP=IQ
c,Gọi M là trung điểm AH .CM I là trực tâm tam giác ABC
Cho tam giác ABC (AB nhỏ hơn AC) có 3 góc nhọn ,đường tròn tâm O đường kính BC cắt AB, AC lần lượt tại D và E. Gọi H là giao điểm của BE và CD, tia AH cắt cạnh BC tại F. Gọi I là trung điểm AH . Qua I kẻ đường thẳng vuông góc với AO cắt đường thẳng DE tại M. CM: AM là tiếp tuyến của đường tròn ngoại tiếp tam giác ADE
Cho tam giác ABC nhọn, vẽ đường tròn đường kính BC=2R cắt các cạnh AB và AC lần lượt tại D và E. BD và CE cắt nhau tại H. Tia AH cắt BC tại F. a) cm tứ giác ADHE nội tiếp
b) Gọi I là giao điểm của BE và DF. Chứng minh IH.BE=BI.HE
cho tam giác ABC vuông tại A (AB<AC). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh tam giác IAB đồng dạng tam giác EAS. b)Gọi K là trung điểm AB, O là trung điểm BC. Chứng minh K, S, O thẳng hàng. c)Gọi giao điểm của KI và AC là M. Đường cao AH của tam giác ABC cắt DE tại N. Chứng minh AM=AN
cho tam giác ABC vuông tại A (AB<AC). Đường tròn (I) nội tiếp tam giác ABC tiếp xúc với các cạnh BC, CA, AB lần lượt tại D, E, F. Gọi S là giao điểm của AI và DE. a) Chứng minh tam giác IAB đồng dạng tam giác EAS.
b)Gọi K là trung điểm AB, O là trung điểm BC. Chứng minh K, S, O thẳng hàng.
c)Gọi giao điểm của KI và AC là M. Đường cao AH của tam giác ABC cắt DE tại N. Chứng minh AM=AN
1 .
Cho tam giác ABC vuông tại A, đường cao AH. Vẽ đường tròn tâm I, đường kính AH cắt AB, AC lần lượt tại M và N, D là giao điểm của MN và OA
a) chứng minh AM.AB=AN.AC và tứ giác BMNC nội tiếp
b) cm tam giác ADI đồng dạng tam giác AHO
c) gọi E là giao điểm BC và NM, K là giao điểm AE và (I). cm góc BKC = 90°
2 .
Cho tam giác ABC nhọn, BC = AC, đường tròn tâm O đường kính BC cắt AB,AC tại E,F. BF cắt CE tại H, AH cắt BC tại D.
a) Chứng minh: AD vuông góc BC
b) Chứng minh: AD là đường phân giác của góc EDF
c) Đường tròn đường kính EC cắt AC tại M, BM cắt (O) tại K. Chứng minh: KC đi qua trung điểm của HF
cho tam giác ABC nhọn (AB<AC). (O) đường kính BC cắt AC,AB lần lượt tại D,E. BD cắt CE tại H. AH cắt BC tại I, DE cắt BC tại F. Tiếp tuyến tại B của (O) cắt AF tại N, gọi J là tâm đường tròn ngoại tiếp tam giác FID. Chứng minh rằng: J,N,D thẳng hàng
Cho tam giác ABC có các góc đều nhọn, các đường cao BD và CE cắt nhau tại H. Gọi M, K, N lần lượt là trung điểm của AH, ED, BC.
a) Chứng minh M, K, N thẳng hàng
b) Tính góc MDN
c) AH cắt BC tại F. Kí hiệu S là diện tích. Chứng minh:
1. SAED = SABC . cos2A
2. SBEDC = SABC . sin2 A
3. SEDF = ( - cos2 A - cos2 B - cos2 C ) . SABC
Mình cần gấp !!!