a: Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình của ΔABC
Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)
\(\Leftrightarrow MN=\dfrac{12}{2}=6\left(cm\right)\)
b: Ta có: MN//AC và \(MN=\dfrac{AC}{2}\)
mà P\(\in\)AC và \(AP=\dfrac{AC}{2}\)(P là trung điểm của AC
nên MN//AP và MN=AP
Xét ΔABC có
M là trung điểm của AB
P là trung điểm của AC
Do đó: MP là đường trung bình của ΔABC
Suy ra: MP//BC và \(MP=\dfrac{BC}{2}\)
mà N\(\in\)BC và \(BM=\dfrac{BC}{2}\)
nên MP//BN và MP=BN
Xét tứ giác AMNP có
MN//AP
MN=AP
Do đó: AMNP là hình bình hành
Xét tứ giác BMPN có
MP//BN
MP=BN
Do đó: BMPN là hình bình hành
c) Hình bình hành AMNP trở thành hình vuông khi \(\left\{{}\begin{matrix}\widehat{MAP}=90^0\\AM=AP\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\widehat{BAC}=90^0\\AB=AC\end{matrix}\right.\)