Xét ΔBCA có
N là trung điểm của AC
P là trung điểm của BC
Do đó: NP là đường trung bình của ΔBCA
Suy ra: NP//MB và NP=MB
hay BMNP là hình bình hành
Xét ΔBCA có
N là trung điểm của AC
P là trung điểm của BC
Do đó: NP là đường trung bình của ΔBCA
Suy ra: NP//MB và NP=MB
hay BMNP là hình bình hành
Cho tam giác ABC vuông tại A có Ab = 6cm, AC=8cm. Gọi M,N,P lần lượt là trung điểm của AB,AC,BC. a) Tính BC,MN b) Chứng minh tứ giác BCNM là hình thang c) Chứng minh tứ giác BMNP là hình bình hành
Cho tABC vuông tại A (AB < AC). Gọi M, N, P lần lượt là trung điểm của các cạnh AB, AC, BC. a) Chứng minh: Tứ giác BMNC là hình thang. b) Chứng minh: Tứ giác BMNP là hình bình hành. c) Chứng minh: Tứ giác ANPM là hình chữ nhật. d) Gọi E là điểm đối xứng của P qua N, I là giao điểm của AP và MN. Chứng Minh: Ba điểm E, I, B thẳng hàng.
LÀM CÂU D HỘ MÌNH VS, CẢM ƠN RẤT NHIỀU
1. cho hình bình hành ABCD, M và N lần lượt là trung điểm của AB và CD. Chứng minh các tứ giác AMCN và MBND là hình bình hành
2.Cho tam giác ABC có AB=3cm, AC=5cm. Các điểm M,N,P lần lượt là trung điểm của AB,AC và BC
a, Chứng minh tứ giác BMNP là hình bình hành
b,Tính chu vi của tứ giác BMNP nếu góc B=90 độ
: Cho tam giác ABC vuông tại A (AB < AC). Gọi M, N, E lần lượt là trung điểm của các cạnh AC, AB, BC. *Chứng minh rằng: Tứ giác BNMC là hình thang. *Chứng minh rằng: tứ giác MNEC là hình bình hành. *Chứng minh rằng: Tứ giác AMEN là hình chữ
Bài 1: Cho tam giác ABC (AB<AC). Gọi M,N ,P lần lượt là trung điểm AB, AC, BC.
a) Chứng minh tứ giác BMNP là hình bình hành.
b) Kẻ đường cao AH của tam giác ABC. Gọi K là điểm đối xứng với H qua M. Chứng minh tứ giác AKBH là hình chữ nhật.
c) Chứng minh tứ giác MNPH là hình thang cân.
d) Gọi O là điểm đối xứng với H qua Ab. Chứng minh OK vuông góc với OH.
Cho tam giác ABC vuông tại A. Gọi M, N, P lần lượt là trung điểm của AB, AC, BC.
a) Chứng minh BMNP là hình bình hành
b) Chứng minh AMPN là hình chữ nhật
Cho tam giác ABC nhọn (AB<AC). Gọi M và N lần lượt là trung điểm của AB, AC.
a. Chứng minh tứ giác BMNC là hình thang
b. Qua M vẽ đường thẳng song song với AC cắt BC tại F. Chứng minh tứ giác MNCE là hình bình hành
c. Đường cao AH của tam giác ABC cắt MN tại điểm I. Gọi F là trung điểm của BH. Chứng minh: tứ giác AIFM là hình bình hành.
Cho tam giác ABC cân tại A. Gọi M và N lần lượt là trung điểm của AC và BC.
a) Chứng minh tứ giác AMNB là hình bình hành.
b) Gọi D là điểm đối xứng với B qua M. Chứng minh tứ giác ABCD là hình bình hành.
c) Gọi E là điểm đối xứng với A qua N. Chứng minh tứ giác ABEC là hình bình hành.
Cho tam giác ABC, gọi M,N,P lần lượt là trung điểm AB,AC,BC. Chứng minh:
a) MN=PC=PB
b) Tứ giác AMNP là hình bình hành