Cho tam giác ABC, A(4;0) B(2;-4) C(0;-2). Gọi G là trọng tâm tam giác ABC. GỌi M, N, P lần lượt là trung điểm các cạnh BC, CA, AB. Chứng minh tam giác ABC, tam giác MNP có cùng trọng tâm
Cho tam giác ABC, gọi M, N, P lần lượt là trung điểm các cạnh BC, CA, AB. Số vectơ bằng vectơ M N → có điểm đầu và điểm cuối trùng với một trong các điểm A, B, C, M, N, P bằng:
A. 1
B. 2
C. 3
D. 6
cho tam giác ABC gọi M N P lần lượt là trung điểm của các cạnh BC, CA, AB. chứng minh vectoAM - NB = PC
Gọi A’, B’, C’ lần lượt là trung điểm của các cạnh BC, CA, AB của tam giác ABC. Tính A B ' → + C ' B →
A. AA’
B. BB’
C. CC’
D. AA’ + BB’ + CC’
Gọi M; N lần lượt là trung điểm của các cạnh AB và CD của tứ giác ABCD. Mệnh đề nào sau đây đúng?
A.
B.
C.
D.
Các điểm M(2; 3), N(0; -4), P(-1; 6) lần lượt là trung điểm các cạnh BC, CA, AB của tam giác ABC . Tọa độ đỉnh A của tam giác là:
A. (1; -10) B. (-3; 1) C. (-2; -7) D. (-3; -1)
Cho ΔABC, gọi M, N lần lượt là trung điểm cảu 2 cạnh AB và AC. Mệnh đề nào đúng dưới đây?
A.\(\overrightarrow{MN}\) VÀ \(\overrightarrow{AC}\) cùng phương
B.\(\overrightarrow{MN}\)và\(\overrightarrow{BC}\) cùng phương
C.\(\overrightarrow{MN}\)và\(\overrightarrow{AB}\)cùng phương
D.\(\overrightarrow{MN}\)và\(\overrightarrow{BN}\)cùng phương
Các điểm M(2;3). N(0;-4), P(-1;6) lần lượt là trung điểm các cạnh BC, CA, AB của tam giác ABC.
a)Tìm tọa độ đỉnh A,B,C của Tam giác.
b) C/m tam giác ABC và MNP có cùng trọng tâm
Câu 1: Cho tam giác ABC có A(3,2); B(4,1) và C(1,5).
a/ Tìm tọa độ trọng tâm G của tam giác ABC.
b/ Tìm tọa độ điểm D để ABCD là hình bình hành
c/ Tìm tọa độ sao cho
Câu 2: Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DE. I, J là trung điểm của MP, NQ. Chứng minh rằng: