a:
Lấy D sao cho M là trung điểm của AD
Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
(AB+AC)=AB+BD>AD
=>AB+AC>2AM
=>(AB+AC)/2>AM
a:
Lấy D sao cho M là trung điểm của AD
Xét tứ giác ABDC có
M là trung điểm chung của AD và BC
=>ABDC là hình bình hành
(AB+AC)=AB+BD>AD
=>AB+AC>2AM
=>(AB+AC)/2>AM
Cho tam giác ABC. Gọi M là trung điểm của BC.
a) Chứng minh A M < A B + A C 2
b) Cho bốn điểm A, B, C, D như hình vẽ. Gọi thứ tự là trung điểm của AC và BD. Chứng minh AB + BC + C + DA > 4MN
1) Tam giác ABC có I là giao điểm các tia phân giác của góc B và C, M là trung điểm của BC. Biết góc BIM=90 và BI=2IM
a. Tính góc BAC
b.Vẽ IH vuông góc AC. Chứng minh rằng BA=3IH
2)Cho tam giác ABC. Lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD=CE. Gọi M, N theo thứ tự là trung điểm của BC, DE. Chứng minh rằng đường thẳng MN tạo với các đường thẳng AB, AC các góc bằng nhau
3)Cho tam giác ABC. Ở phía ngoài tam giác ấy vẽ tam giác đều ACE. Trên nửa mặt phẳng chứa C có bờ AB, vẽ tam giác đều ABD. Gọi H, K, M theo thứ tự là trung điểm của AB, AE, CD. Chứng minh rằng HKM là tam giác đều
4)Cho điểm M nằm trên đoạn thẳng AB. Trên cùng một nửa mặt phẳng bờ AB, vẽ các tam giác đều AMC, BMD. Gọi E, F theo thứ tự là trung điểm của AD, BC. Chứng minh rằng EF=1/2CD
Cho tam giác ABC vuông tại A(AB < AC) có M là trung điểm của BC. Trên tia AM lấy điểm D sao cho AM = MD.
a) Chứng minh ΔAMC=ΔDMB .
b) Chứng minh BD // AC và AD = BC.
c) Gọi K là trung điểm của AC. Chứng minh MK⊥BD.
Cho tam giác ABC gọi D,E thứ tự là trung điểm của AC,AB. Trên tia BD lấy điểm M sao cho MD=BD. Trên tia Ce lấy điểm N sao cho NE=EO. Chứng minh :
a) AM//BC, AM=BC
b) A là trung điểm MN
Cho tam giác ABC có AB = AC và AC > BC. Gọi D là trung điểm của BC.
a) Chứng minh tam giác ABD = tam giác ACD
b) Vẽ DM ⊥ AB (M thuộc AB). Trên cạnh AC lấy điểm N sao cho AM = AN. Chứng minh: DM = DN
c) Trên tia đối của tia DA lấy điểm E Sao cho DA = DE. Vẽ DK ⊥ BE. (K thuộc BE). Chứng minh: ba diểm N, D, K thẳng hàng
Cho tam giác ABC có AB=AC và M là trung điểm của cạnh BC
a)Chứng minh tam giác AMB= tam giác AMC
b)Qua A, vẽ đường thẳng a vuông góc với AM. Chứng minh AM vuông góc với BC và a song song với BC
c)Qua C, vẽ đường thẳng b song song với AM . Gọi N là giao điểm của hai đường thẳng a và b. Chứng minh tam giác AMC =tam giác CNA
d)Gọi T là trung điểm của đoạn thăng AC .Chứng minh I là trung điểm của đoạn thẳng MN
cho tam giác abc nhọn (ab < ac ) gọi m là trung điểm của bc . trên tia am lấy điểm n sao cho m là trung điểm của an
a, chứng minh tam giác am b = tam giác nmc
b, vẽ cd vuông góc với ab ( d thuộc ab ) so sánh góc abc và góc bcn . tính góc dcn
c, vẽ ah vuoogn góc với bc ( h thuộc bc ) trên tia đối của tia ha lấy điểm i sao cho hi = ha . chứng minh bi = cn
Bài 2 Cho tam giác nhọn ABC (AB < AC). Gọi M là trung điểm của BC. Trên tia
đối của tia MA lấy điểm D sao cho MD = MA.
a) Chứng minh ABM = DCM.
b) Kẻ AH vuông góc với BC (H BC). Vẽ điểm E sao cho H là trung điểm
của EA. Chứng minh BE = CD.
Bài 3: . Cho ΔABC có AB = AC và D là trung điểm của BC. Gọi E là trung điểm
của AC, trên tia đối của tia EB lấy điểm M sao cho EM = EB.
a) Chứng minh ΔABD = ΔACD
b) Chứng minh rằng AM = 2.BD
c) Tính số đo của ·MAD
Cho tam giác ABC có AB=AC, M là trung điểm của BC:
a) Chứng minh tam giác AMB= tam giác AMC
b) Qua A kẻ đường thẳng b vuông góc với AM. Chứng minh b // BC
c) Qua C kẻ đường thẳng c // AM. Gọi N là giao điểm của 2 đường thẳng b và c. Chứng minh tam giác AMC= tam giác CNA
d) Gọi I là trung điểm của AC. Chứng minh I là trung điểm của MN