Xét tam giác ABC có:
F là trung điểm AB(gt)
E là trung điểm AC(gt)
=> EF là đường trung bình
=> EF//BC và \(EF=\dfrac{1}{2}BC\)
Mà D thuộc BC và \(BD=\dfrac{1}{2}BC\)(D là trung điểm BC)
=> EF//BD và EF=BD
=> ABDF là hình bình hành
Xét tam giác ABC có:
F là trung điểm AB(gt)
E là trung điểm AC(gt)
=> EF là đường trung bình
=> EF//BC và \(EF=\dfrac{1}{2}BC\)
Mà D thuộc BC và \(BD=\dfrac{1}{2}BC\)(D là trung điểm BC)
=> EF//BD và EF=BD
=> ABDF là hình bình hành
Cho tam giác ABC vuông tại A có AB=6, gọi D, E lần lượt là trung điểm của BC, AC. Gọi F là điểm đối xứng với D qua E. a) Tính DE ? b) Chứng minh ABDF là hình bình hành c) Chứng minh ADCF là hình thoi. Tính cạnh hình thoi biết AC=8 ? d) Tam giác ABC phải thỏa mãn điều kiện gì để ADCF là hình vuông?
Cho tam giác ABC cân tại A . Gọi D,E,F lần lượt là trung điểm của BC,AB,AC. Lấy điểm G đối xứng của điểm D qua F
a) Chứng minh tứ giác ABDF là hình thang , tứ giác BEFC là hình thang cân
b) Chứng minh tứ giác ABDG là hình bình hành
c) Chứng minh tứ giác AFDE là hình thoi
d) Chứng minh tứ giác ADCG là hình chữ nhật
Gọi H,K lần lượt là trung điểm BE,CF. Cho HK=12cm , AD=15cm. Tính độ dài đoạn thẳng BD và chu vi hình thang BEFC.
Cho tam giác abc cân tại A. Gọi D, E, F lần lượt là trung điểm của BC, AB, AC. Lấy điểm G đối xứng của điểm D qua F.
chứng minh tứ giác ABDF là hình thang, tứ giác BEFC là hình thang cân.
Cho tam giác ABC điểm M nằm trong tam giác, gọi D, E, F lần lượt là trung điểm các cạnh BC, CA, AB, gọi A', B', C' thứ tự là điểm đối xứng của M qua D, E, F
a, Chứng minh tứ giác AB'A'B là hình bình hành
b, Gọi O là giao điểm của B và B', chứng minh C và C' đối xứng nhau qua điểm O
Cho tam giác ABC cân tại A. Gọi E, F và D lần lượt là trung điểm của AB, BC, AC. Biết BCDE là hình thang, BEDF là hình bình hành. Chứng minh ADFE là hình thoi.
Cho tam giác ABC cân tại A. Gọi E, F và D lần lượt là trung điểm của AB, BC, AC. Biết BCDE là hình thang, BEDF là hình bình hành. Chứng minh ADFE là hình thoi.
Cho tam giác ABC vuông tại A, có cạnh AB=3cm, gọi D, E lần lượt là trung điểm của BC, AC. Gọi F là điểm đối xứng với D qua E.
a) Tính DE , Chứng minh ABDF là hbh.
b) cm ADCF là hình thoi. Tam giác ABC phải thỏa mãn điều kiện gì để ADCF là hình vuông.
Cho tam giác ABC cân ở A. Gọi D, E, F lần lượt là trung điểm của BC, CA, AB. Trên tia đối của tia FC lấy điểm H sao cho F là trung điểm của CH. Các đường thẳng DE và AH cắt nhau tại I. Chứng minh rằng: a) BDIA là hình bình hành và BDIH là hình thang cân b) F là trọng tâm của tam giác HDE
cho tam giác abc cân tại a gọi d e f lần lượt là trung điểm của BC CA và AB cm aidb là hình bình hành cm bhid là hình thang cân