Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phanh Lê

Cho tam giác ABC. Đường thẳng qua A song song với BC cắt đường thẳng qua C song song với AB ở D. Gợi M là giao điểm của BD và AC.

a) Chứng minh  ∆ A B C   =   ∆ C D A .

b) Chứng minh M là trung điểm của AC.

c) Đường thẳng d qua M cắt các đoạn thẳng AD,BC lần lượt ở I, K. Chứng minh M là trung điểm của IK.

Nguyễn Tân Vương
12 tháng 1 2022 lúc 22:07

\(\text{a)Ta có:AD//BC}\Rightarrow\widehat{CAD}=\widehat{ACB}\text{(so le trong)}\)

\(\text{AB//CD}\Rightarrow\widehat{BAC}=\widehat{ACD}\text{(so le trong)}\)

\(\text{Xét }\Delta ABC\text{ và }\Delta CAD\text{ có:}\)

\(\widehat{CAD}=\widehat{ACB}\text{(so le trong)}\)

\(\widehat{BAC}=\widehat{ACD}\text{(so le trong)}\)

\(AC\text{ chung}\)

\(\Rightarrow\Delta ABC=\Delta CAD\left(c.g.c\right)\)

\(\Rightarrow\text{BC=AD(hai cạnh tương ứng)}\)

\(\text{b)}\text{Xét }\Delta AMD\text{ và }\Delta BMC\text{ có:}\)

\(\widehat{BCM}=\widehat{CAD}\text{(đối đỉnh)}\)

\(\widehat{BMC}=\widehat{AMD}\text{(đối đỉnh)}\)

\(\Rightarrow\widehat{CBM}=\widehat{AMD}\)

\(\text{Xét }\Delta AMD\text{ và }\Delta BMC\text{ có:}\)

\(\widehat{BMC}=\widehat{CAD}\text{(so le trong)}\)

\(\text{ BC=AD (cmt)}\)

\(\widehat{CBM}=\widehat{AMD}\left(cmt\right)\)

\(\Rightarrow\Delta AMD=\Delta BMC\left(g.c.g\right)\)

\(\Rightarrow\text{AM=CM(2 cạnh tương ứng)}\)

\(\Rightarrow\text{M là trung điểm của AC}\)

\(\text{c)Xét }\Delta AMI\text{ và }\Delta CMK\text{ có:}\)

\(\widehat{BCM}=\widehat{CAD}\text{(so le trong)}\)

\(\text{AM=CM (cmt)}\)

\(\widehat{CMK}=\widehat{AMI}\text{(đối đỉnh)}\)

\(\Rightarrow\Delta AMI=\Delta CMK\left(g.c.g\right)\)

\(\Rightarrow\text{MI=MK}\)

\(\Rightarrow\text{M là trung điểm của IK}\)

Phanh Lê
12 tháng 1 2022 lúc 20:05

giải chi tiết giúp mình với ạ^^

 


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Hoàng Nhật Anh
Xem chi tiết
Ngọc Mai
Xem chi tiết
Lê Thị Thùy Linh
Xem chi tiết
Gia Hoàng Audio
Xem chi tiết
Kiên Vũ
Xem chi tiết
pansak9
Xem chi tiết
Lê Bình Thiện Phương
Xem chi tiết
Wang Jum Kai
Xem chi tiết