\(\text{a)Ta có:AD//BC}\Rightarrow\widehat{CAD}=\widehat{ACB}\text{(so le trong)}\)
\(\text{AB//CD}\Rightarrow\widehat{BAC}=\widehat{ACD}\text{(so le trong)}\)
\(\text{Xét }\Delta ABC\text{ và }\Delta CAD\text{ có:}\)
\(\widehat{CAD}=\widehat{ACB}\text{(so le trong)}\)
\(\widehat{BAC}=\widehat{ACD}\text{(so le trong)}\)
\(AC\text{ chung}\)
\(\Rightarrow\Delta ABC=\Delta CAD\left(c.g.c\right)\)
\(\Rightarrow\text{BC=AD(hai cạnh tương ứng)}\)
\(\text{b)}\text{Xét }\Delta AMD\text{ và }\Delta BMC\text{ có:}\)
\(\widehat{BCM}=\widehat{CAD}\text{(đối đỉnh)}\)
\(\widehat{BMC}=\widehat{AMD}\text{(đối đỉnh)}\)
\(\Rightarrow\widehat{CBM}=\widehat{AMD}\)
\(\text{Xét }\Delta AMD\text{ và }\Delta BMC\text{ có:}\)
\(\widehat{BMC}=\widehat{CAD}\text{(so le trong)}\)
\(\text{ BC=AD (cmt)}\)
\(\widehat{CBM}=\widehat{AMD}\left(cmt\right)\)
\(\Rightarrow\Delta AMD=\Delta BMC\left(g.c.g\right)\)
\(\Rightarrow\text{AM=CM(2 cạnh tương ứng)}\)
\(\Rightarrow\text{M là trung điểm của AC}\)
\(\text{c)Xét }\Delta AMI\text{ và }\Delta CMK\text{ có:}\)
\(\widehat{BCM}=\widehat{CAD}\text{(so le trong)}\)
\(\text{AM=CM (cmt)}\)
\(\widehat{CMK}=\widehat{AMI}\text{(đối đỉnh)}\)
\(\Rightarrow\Delta AMI=\Delta CMK\left(g.c.g\right)\)
\(\Rightarrow\text{MI=MK}\)
\(\Rightarrow\text{M là trung điểm của IK}\)