Cho ngũ giác ABCDE. Dựng điểm M thỏa mãn điều kiện M A → + M B → + M C → + M D → + M E → = 0 → . Gọi G là trọng tâm tam giác ABC, H là trung điểm của DE. Khi đó:
A. M là trung điểm của GH
B. M là điểm thỏa mãn MH = 2MG
C. M là điểm thỏa mãn M H → = 3 2 M G →
D. M là điểm thỏa mãn M H → = 3 2 M G →
Cho hình bình hành ABCD tâm O. Xác định vị trí điểm M thỏa mãn \(\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{AM}\). Cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm các cạnh AB, BC, CA và dựng điểm K sao cho \(\overrightarrow{MK}+\overrightarrow{CN}=\overrightarrow{0}\). Khi đó, điểm K trùng với
Trong mặt phẳng tọa độ Oxy cho A(3; -1) ; B( -1; 2) và I( 1; -1) . Xác định tọa độ các điểm C; D sao cho tứ giác ABCD là hình bình hành biết I là trọng tâm tam giác ABC. Tìm tọa tâm O của hình bình hành ABCD
A.
B.
C.
D.
Cho tam giác ABC, M là điểm thỏa mãn
|2\(\overrightarrow{MA}\) + \(\overrightarrow{MB}\)|. Tập hợp điểm M là:
A. Là đỉnh thứ tư của hình bình hành dựng trên hai cạnh AB, AC
B. Đường trung trực của đoạn thẳng cố định
C. Đường thẳng đi qua trung điểm của AB và song song với BC D. Là đường tròn có bán kính bằng BC
cho hình bình hành ABCD có m thuộc B sao cho MB=2MA, N là trung điểm CD. gọi I và J lần lượt là điểm thỏa mãn vectơ BI = m.vectoBC, vecto AJ=n.vectoAI. khi j là trọng tam của tam giác BMN thì m.n bằng bao nhiêu
Điều kiện nào sau đây không là điều kiện cần và đủ để G là trọng tâm của tam giác ABC, với M là trung điểm của BC?
A. A M → = - 3 2 G A →
B. 2 G M → = G A →
C. A G → + B G → + C G → = 0 →
D. G A → + G B → + G C → = 0 →
Câu 1: Cho tam giác ABC có A(3,2); B(4,1) và C(1,5).
a/ Tìm tọa độ trọng tâm G của tam giác ABC.
b/ Tìm tọa độ điểm D để ABCD là hình bình hành
c/ Tìm tọa độ sao cho
Câu 2: Cho ngũ giác ABCDE. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DE. I, J là trung điểm của MP, NQ. Chứng minh rằng:
Cho △ABC biết A (-1;1), B (2;1), C (-1;-3)
a) Tính chu vi tam giác
b) Tìm tọa độ trọng tâm G của tam giác ABC
c) Xác định điểm D sao cho tứ giác ABCD là hình bình hành
Cho I; J; K lần lượt là trung điểm của các cạnh AB; BC; CA của tam giác ABC. Giả sử M là điểm thỏa mãn điều kiện M A → + 2 M B → + M C → = 0 → . Khi đó vị trí điểm M là:
A. M là giao điểm 2 đường chéo của hình bình hành BIKJ.
B.M là đỉnh thứ tư của hình bình hành AIKM.
C. M là trực tâm của tam giác ABC.
D.M là trọng tâm của tam giác IJK.