Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.
Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn (O) có M là trung điểm của AB, N là trung điểm của BC. Đường cao hạ từ đỉnh A của tam giác ABC cắt đường tròn (O) tại H và cắt đường tròn (T) ngoại tiếp tam giác BNH tại K. Gọi D và E lần lượt là giao điểm của đường thẳng HN với đường thẳng AC và đường tròn (O) ; F là giao điểm của đường thẳng DK và đường tròn (T). Đường tròn ngoại tiếp tam giác DEF cắt đường tròn (T) tại P và cắt đường thẳng AC tại Q. Chứng minh rằng: ba điểm N, P, Q thẳng hàng.
Bài1 : Cho đường tròn (O,5cm) điểm M nằm bên ngoài đường tròn. Kể các tiếp tuyến MA, MB với đường tròn ( AB là tiếp điểm) biết góc AMB= 60 độ
a: Chứng minh AMB là tam giác đều
b: Tính chu vi tam giác AMB
c: Tia AO cắt đường tròn ở C; tứ giác BMOC là hình gì? Vì sao?
Bài 2 : Cho đường tròn (O) đường kính AB, gọi M là một điểm tùy ý trên đường tròn, xy là tiếp tuyến của đường tròn tại A, qua M kẻ MP vuông góc AB, MQ vuông góc xy
a: tứ giác APMQ là hình gì? Vì sao?
b: gọi I là trung điểm PQ. Chứng minh OI vuông góc AM
Bài1 : Cho đường tròn (O,5cm) điểm M nằm bên ngoài đường tròn. Kể các tiếp tuyến MA, MB với đường tròn ( AB là tiếp điểm) biết góc AMB= 60 độ
a: Chứng minh AMB là tam giác đều
b: Tính chu vi tam giác AMB
c: Tia AO cắt đường tròn ở C; tứ giác BMOC là hình gì? Vì sao?
Bài 2 : Cho đường tròn (O) đường kính AB, gọi M là một điểm tùy ý trên đường tròn, xy là tiếp tuyến của đường tròn tại A, qua M kẻ MP vuông góc AB, MQ vuông góc xy
a: tứ giác APMQ là hình gì? Vì sao?
b: gọi I là trung điểm PQ. Chứng minh OI vuông góc AM
cho tam giác ABC đều, gọi O là trung điểm của cạnh BC. các điểm D , E lần lượt di động trên các cạnh AB, AC sao cho góc DOE = 60 độ. CM tích BD*CE không đổi.
cho đường tròn (o;5)đường kính ab gọi e là một điểm nằm trên ab sao cho be=2cm. qua trung điểm H của đoạn AE vẽ dây cung CD vuông góc AB
a) tứ giác aced là hình gì? vì sao
b)gọi i là giao điểm của DE với BC. c/m/r:i thuộc đường tròn (o') đường kính EB
c) chứng minh HI là tiếp tuyến chủa đường tròn (o')
d) tính độ dài đoạn HI
Cho tam giác ABC. Gọi D,E,F lần lượt là trung điểm của BC, CA,AB. Gọi M,N, P lần lượt là chân đường cao hạ từ A, B, C. Các điểm G, I, K là trung điểm của ba đoạn nối từ trực tâm của tam giác đến ba đỉnh A, B, C. chứng minh chín điểm D,E,F, M, N, P, G, I, K thuộc một đường tròn(đường tròn Ơ le hay đường tròn 9 điểm)
Cho tam giác ABC, vẽ cung tròn tâm O đường kính BC, nó cắt 2 cạnh AB, AC theo thứ tự ở D,E
a) Chứng minh: CD vông góc AB Và BE vuông góc AC
b) Chứng minh: 4 điểm B, D, E, C cùng thuộc một đường tròn tâm I
c) Gọi K là giao điểm của BE và CD. Chứng minh AK vông góc BC
Cho nửa đường tròn tâm O, đường kính AB. Vẽ 2 tiếp tuyến Ax; By của nửa (O). Gọi C là điểm trên nửa (O) sao cho AC > BC. Tiếp tuyến tại C của nửa (O) cắt Ax; By lần lượt tại D; E.
a) Chứng minh: Tam giác ABC vuông và AD + BE = ED.
b) Chứng minh: 4 điểm A; D; C; O cùng thuộc 1 đường tròn và gócADO = gócCAB.
c) DB cắt nửa (O) tại F và cắt AE tại I. Tia CI cắt AB tại K. Chứng minh: IC = IK.
d) Tia AF cắt tia BE tại N, gọi M là trung điểm của BN. Chứng minh: 3 điểm A; C; M thẳng hàng.
Giúp mình 2 bài này với (chỉ cần làm giúp mình câu b của 2 bài thôi ạ)
1) Cho đường tròn (O) và 2 đường kính AB, EF vuông góc với nhau. Từ D trên cung AE vẽ tiếp tuyến Dx với đường tròn, cắt đường thẳng OE tại P. Gọi M là giao điểm của AD và OE. N là giao điểm của OE và DB. Chứng minh:
a) tam giác MND đồng dạng với tam giác BAD (câu này làm rồi)
b) P là trung điểm của OM
c) MA.MD=ME.MF=MN.MO
2) Cho hình chữ nhật ABCD có AB=a, AD=2a. Trên CD lấy điểm M bất kì. Kéo dài AM cắt BC tại N.
a) Chứng minh 4/AM^2 + 1/AN^2 = 1/a^2 (câu này làm được rồi)
b) Tìm vị trí của M để DN là tiếp tuyến của đường tròn ngoại tiếp tam giác ADC