cho tam giác ABC nhọn và điểm D nằm trong tam giác.mM,F,E LẦN LƯỢT LÀ CÂN ĐƯỜNG VUÔNG GÓC HẠ TỪ D xuống các cạnh BC,AB,AC. Tính tỉ số diện tích MEF và diên tích ABC
Bài 1: Cho tứ giác ABCD có C + D = 900 . Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC và CA. Cmr : Bốn điểm M,N,P,Q cùng nằm trên một đường tròn.
Bài 2 : Cho hình thoi ABCD. Đường trung trực của cạnh AB cắt BD tại E và cắt AC tại F. Cm E, F lần lượt là tâm của đường tròn ngoại tiếp tam giác ABC và ABD.
Mọi người giúp mình với :)
Cho tam giác ABC có 3 góc nhọn, gọi M là trung điểm BC.Lấy điểm D trên cạnh AB,lấy điểm E trên cạnh AC sao cho MD=ME.Vẽ các đường thẳng vuông góc với AB tại D và vuông góc với AC tại E,chúng cắt nhau ở H.Chứng minh: HD.HC=HB.HE
Toán lớp 9Cho tam giác ABC đều, dường cao AH, M là trung điểm thuộc cạnh BC. Kẻ ME vuông góc AB, MF vuông góc AC. Gọi I là trung điểm AM.
a) Tứ giác HEFI là hình gì
b) Gọi G là trọng tâm tam giác ABC. C/M: FE, HI, MG đồng quy
c) Tìm trên cạnh BC sao cho EF bé nhất. Tính EF khi đó biết cạnh tam giác đều là a
( KHÔNG CẦN VẼ HÌNH CŨNG ĐƯỢC; GỢI Ý SƠ SƠ CHO MINK LÀ DC RÙI... THANKS:))
Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.
Cho tam giác ABC có:AB=21cm,AC=28cm,BC=35cm ,đg cao AH,Gọi D,E lần lượt là hình chiếu của H trên AB,AC.Gọi M,N lần lượt là trung điểm của BH và HC
a)Tính BH,DE,góc ABC?
b)Tính SDENM?
1. Cho tam giác ABC có AB=6cm, AC=8cm .Các đường trung tuyến BD và CE vuông góc với nhau. Tính BC.
2. Cho tam giác ABC vuông cân tại A, đường trung tuyến BM. Gọi D là hình chiếu của C trên BM. Gọi D là hình chiếu của C trên BM, H là hình chiếu của D trên AC. Chứng minh : AH=3HD
cảm ơn các bạn trước nhaaa
1. cho 4 điểm E,B,C,D cùng nằm trên 1 đường thẳng thoả mãn \(\frac{DB}{DC}\)=\(\frac{EB}{EC}\) và 1 điểm A sao cho AE vuông góc với AD. CMR: AD,AE thứ tự là phân giác trong và ngoài của tam giác ABC
2. cho hình thang ABCD (BC//AD). gọi M,N lần lượt là 2 điểm trên AB, CD sao cho \(\frac{AM}{AB}\)=\(\frac{CN}{CD}\); đường thẳng MN cắt AC,BD tại E,F. CMR: ME=NF
Cho tam giác ABC có 3 góc nhọn (AB < AC) nội tiếp đường tròn (O) có M là trung điểm của AB, N là trung điểm của BC. Đường cao hạ từ đỉnh A của tam giác ABC cắt đường tròn (O) tại H và cắt đường tròn (T) ngoại tiếp tam giác BNH tại K. Gọi D và E lần lượt là giao điểm của đường thẳng HN với đường thẳng AC và đường tròn (O) ; F là giao điểm của đường thẳng DK và đường tròn (T). Đường tròn ngoại tiếp tam giác DEF cắt đường tròn (T) tại P và cắt đường thẳng AC tại Q. Chứng minh rằng: ba điểm N, P, Q thẳng hàng.