KẺ NH vuông góc DC
DH,DC là hình chiếu của ND , NC lên BC
mà DH < DC = > DN < DC
KẺ NH vuông góc DC
DH,DC là hình chiếu của ND , NC lên BC
mà DH < DC = > DN < DC
Cho tam giác abc vuông tại a. Gọi m là trung điểm của bc, n là trung điểm của ac. Trên tia đối của tia ma lấy điểm d sao cho ma=md. Gọi E là giao điểm của hai đường thẳng bn và dc. a) chứng minh tam giác amb= tam giác dmc; b) chứng minh ac vuông góc dc; c) Cho biết acb =30, tính aec
Cho tam giác ABC
a) Cho biết góc A=80 độ, góc B=60 độ. So sánh các cạnh của tam giác ABC.
b) Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy D sao cho MD=MA. Cm: AB=CD và AB+AC>AD.
c)Gọi N là trung điểm của CD và K là giao điểm của AN và BC. Cm: BC=3CK
cho tam giác ABC có 3 góc nhọn, D là trung điểm của AB. trên tia đối của tia DC lấy điểm M sao cho MD=DC a, tam giác MDA = tam giác CDB b, AM // BC c, gọi E là trung điểm của AC. trên tia đối của tia EB lấy điểm N sao cho EN=EB. chứng minh M,A,N thẳng hàng ai giải đúng mình like cho
Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.
Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK. a) Chỉ ra hai tam giác bằng nhau và chứng minh. b) Chỉ ra các cạnh các góc tương ứng. c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.
Bài 3: Cho ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC xác định điểm E sao cho AE = AC. Chứng minh rằng: a) BC // ED b) DBC = BDE
Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD.
Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D. Chứng minh: a) DB = DC b) AD BC
Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh: a) ABM = DCM. b) AB // DC. c) AM BC
Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB.
Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh a) PM = PN. b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau.
Bài 9: Cho tam giác ABC có góc A bằng 90 0 . Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB. a) Chứng minh: AB = DE b) Tính số đo góc EDC?
Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh: a) MA = MD b) BA điểm A, M, D thẳng hàng.
11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh: a) CP//AB b) MB = CP c) BC = 2MN
Cho tam giác ABC, qua A kẻ AD//BC và AD=BC (D và B nằm không cùng phía với AC)
a) Chứng minh: DC = AB, DC // AB
b) Gọi I là giao điểm của BD và AC. CM I là trung điểm của AC và BD
c) Trên tia BA lấy M sao cho MA=AB. Gọi K là trung điểm của AD. CM K là trung điểm của MC
Bài 7. Cho tam giác ABC vuông tại A, AB > AC. M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD = MA. a)CMR: AB = DC và AB // DC. b) CMR: ABC = CDA từ đó suy ra 2 BC AM . c)Trên tia đối của tia AC lấy điểm E soa cho AE = AC. CMR: BE // AM. d) Tìm điều kiện của tam giác ABC để 2 BC AC . e)Gọi O là trung điểm của AB. CMR: Ba điểm E, O, D thẳng hàng
1. Cho tam giác ABC,Trên tia đối CB lấy điểm M sao cho CM = CB.Trên tia đối của tia CA lấy điểm D sao cho CD = CA
a) Chứng minh tam giác ABC = tam giác DMC
b) Chứng minh MD // AB
c) Gọi I là một điểm nằm giữa A và B. Tia CI cắt MD tại điểm N. So sánh độ dài các đoạn thẳng BI và NM, IA=ND
2. Cho tam giác ABC có AB = AC, M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho AM = MD.
a) Chứng minh tam giác ABM = tam giác DCM.
b) Chứng minh AB // DC
c) Chứng minh AM _l_ BC
d) Tìm điều kiện của tam giác ABC để góc ADC bằng 36 độ
GIẢI NHANH CHO MÌNH NHA MÌNH TICK CHO.....NHỚ CHỈ CÁCH GIẢI NHA ĐỪNG GHI CMTT NHA
Bài 1: Cho tam giác ABC có M là trung điểm cạnh BC. Trên tia đối của tia MA lấy D sao cho MA=MD. Tìm các tam giác bằng nhau có trên hình vẽ và chứng minh điều đó.
Bài 2: Cho hai điểm A và B nằm trên đường thẳng xy, trên cùng một nửa mặt phẳng bờ là đường thẳng xy ta kẻ hai đoạn AH và BK cùng vuông góc với xy sao cho AH=BK.
a) Chỉ ra hai tam giác bằng nhau và chứng minh.
b) Chỉ ra các cạnh các góc tương ứng.
c) Gọi O là trung điểm HK. So sánh hai tam giác AOH và BOK.
Bài 3: Cho ABC, trên tia đối của tia AB, xác định điểm D sao cho AD = AB. Trên tia đối của tia AC xác định điểm E sao cho AE = AC. Chứng minh rằng:
a) BC // ED b) DBC = BDE
Bài 4: Cho hai đoạn AB và CD cắt nhau tại trung điểm O của mỗi đường. Chứng minh BC // AD.
Bài 5: Cho tam giác ABC có AB = AC. Tia phân giác của góc A cắt BC ở D.
Chứng minh: a) DB = DC b) AD BC
Bài 6: Cho tam giác ABC có AB = AC, M là trung điểm của BC, trên tia AM lấy D sao cho AM = MD. Chứng minh:
a) ABM = DCM. b) AB // DC. c) AM BC
Bài 7: Qua trung điểm M của đoạn AB vẽ đường thẳng d vuông góc với AB. Trên đường thẳng d lấy điểm K. Chứng minh KM là tia phân giác của góc AKB.
Bài 8: Cho góc xOy có Ot là tia phân giác. Trên hai tia Ox, Oy lần lượt lấy các điểm M, N sao cho OM = ON. Trên tia Ot lấy P bất kì. Chứng minh
a) PM = PN.
b) Khoảng cách từ P đến hai cạnh của góc xOy bằng nhau.
Bài 9: Cho tam giác ABC có góc A bằng 900. Trên tia đối của tia CA lấy điểm D sao cho CD = CA. Trên tia đối của tia CB lấy điểm E sao cho CE = CB.
a) Chứng minh: AB = DE b) Tính số đo góc EDC?
Bài 10: Cho tam giác ABC, M là trung điểm của BC. Trên nửa mặt phẳng bờ là đường thẳng BC không chứa điểm A vẽ tia Cx song song với AB. Trên tia Cx lấy điểm D sao cho CD = AB. Chứng minh:
a) MA = MD b) BA điểm A, M, D thẳng hàng.
Bài 11: Cho tam giác ABC, M, N là trung điểm của AB và AC. Trên tia đối của tia NM xác định điểm P sao cho NP = MN. Chứng minh:
a) CP//AB b) MB = CP c) BC = 2MN
Bài 12: Cho ∆ABC gọi M, N lần lượt là trung điểm của AC, AB. Trên tia đối của tia MB lấy điểm D sao cho MD = MB. Trên tia đối của tia NC lấy điểm E sao cho NE = NC. Chứng minh :
a) ∆AMD = ∆CMB
b) AE // BC
c) A là trung điểm của DE
Bài 13: Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MA = MD.
a) Chứng minh: AB = CD
b) Chứng minh: BD // AC
c) Tính số đo góc ABD
Bài 14: Cho tam giác ABC, AB = AC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD. Chứng minh rằng:
a) BE = CD
b) ∆BMD = ∆CNE
c) AM là tia phân giác của góc BAC
Bài 15: Cho ABC cân tại A. Gọi M là trung điểm của cạnh BC.
a) Chứng minh : ABM = ACM
b) Từ M vẽ MH AB và MK AC. Chứng minh BH = CK
c) Từ B vẽ BP AC, BP cắt MH tại I. Chứng minh IBM cân.
Bài 16: Cho ABC vuông tại A. Từ một điểm K bất kỳ thuộc cạnh BC vẽ KH AC. Trên tia đối của tia HK lấy điểm I sao cho HI = HK. Chứng minh :
a) AB // HK b) AKI cân c) d) AIC = AKC
Bài 17: Cho ABC cân tại A ( Â < 90o ), vẽ BD AC và CE AB. Gọi H là giao điểm của BD và CE.
a) Chứng minh: ABD = ACE b) Chứng minh AED cân
c) Chứng minh AH là đường trung trực của ED
d)Trên tia đối của tia DB lấy điểm K sao cho DK = DB. Chứng minh
Bài 18: Cho ABC cân tại A. Trên tia đối của tia BA lấy điểm D, trên tia đối của tia CA lấy điểm E sao cho BD = CE. Vẽ DH và EK cùng vuông góc với đường thẳng BC. Chứng minh:
a) HB = CK b) c)HK // DE d) AHE = AKD
Bài 19: Cho ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Chứng minh:
a) ADE cân b) ABD = ACE
Bài 20: Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD = AE. Gọi M là giao điểm của BE và CD.
Chứng minh:
a) BE = CD. b) BMD = CME
c) AM là tia phân giác của góc BAC.
Bài 21: Cho tam giác ABC (AB < AC) có AM là phân giác của góc A (M thuộc BC).Trên AC lấy D sao cho AD = AB.
a) Chứng minh: BM = MD
b) Gọi K là giao điểm của AB và DM . Chứng minh: DAK = BAC
c) Chứng minh: AKC cân
d) So sánh: BM và CM.
cho tam giác ABC có 3 góc nhọn, D là trung điểm của AB. trên tia đối của tia DC lấy điểm M sao cho MD=DC
a, tam giác MDA = tam giác CDB
b, AM // BC
c, gọi E là trung điểm của AC. trên tia đối của tia EB lấy điểm N sao cho EN=EB. chứng minh M,A,N thẳng hàng ai giải đúng mình like cho
cho tam giác ABC , M là trung điểm của BC, trên tia đối của tia MA lấy điểm D sao cho MD=MA
a.C/m AB//DC và AB=DC
b.Kẻ MH vuông góc với AB(H thuộc AB). C/m MH vuông góc với CD
c. TRên tia AC lấy điểm I , trên Tia DB lấy điểm K sao cho AI=KD. C/m I,M,K thẳng Hàng
d. tìm điều kiện của tam giác ABC để góc CDB =90 độ
GIÚP Mik Với Mai Mình THI rồi
Vẽ Cả HÌNh nữa nhé