Cho \(\Delta ABC\) thỏa mãn \(h_a=\sqrt{p\left(p-a\right)}\)
Chứng minh: \(\Delta ABC\) cân
ha là đường cao hạ từ đỉnh A
p là nửa chu vi tam giác
a là cạnh đối điện đỉnh A
1, Cho tam giác ABC có G là trọng tâm, biết rằng vecto AG= x vecto AB + y vecto AC (x;y ∈ R). tính T=x+y.
2, cho tam giác ABC đều cạnh a, H là trung điểm của BC. Tính |vecto CA - vecto HC|.
3, Cho tập hợp A= x ∈ R; x=3k, k ∈ Z, 10<x<100. Tổng các phần tử của tập hợp A bằng bao nhiêu?
Cho tam giác ABC ngoại tiếp đường tròn (I). Gọi D, E, F lần lượt là các tiếp điểm của (I) với các cạnh BC, CA, AB . Các điểm M, N thuộc (I) sao choEM||FN||BC. Gọi P, Q lần lượt là các giao điểm của BM, CN với (I). Chứng minh BC, PE, QF đồng quy.
Cho tam giác ABC (AB<AC) nội tiếp (O), M là trung điểm BC. Các điểm N, P thuộc đoạn BC sao cho MN=MP. Các đường thẳng AM, AN, AP cắt (O) lần lượt tại D, E, F. Chứng minh rằng BC, EF và tiếp tuyến của (O) tại D đồng quy.
Trong mặt phẳng Oxy, cho tam giác ABC cân tại A, đường thẳng AC có phương trình : 4x-3y+8=0 . Gọi H là trung điểm của BC, D là hình chiếu của H trên cạnh AC, I là trung điểm của HD, đường thẳng BD đi qua M(9,-12), đường thẳng AI có phương trình : 13x-16y+51=0. Viết phương trình đường thẳng BC
Cho tam giác ABC có AB = 6cm, AC = 8cm, BC = 10cm
a/ Chứng tỏ tam giác ABC là tam giác vuông.
b/ Tia phân giác của góc B cắt AC tại M, vẽ MN vuông góc với BC (N thuộc BC). Chứng minh AN vuông góc với BM
c/ Tia NM cắt tia BA tại K. So sánh MK và MN.
Bài 5: Cho tam giác ABC có BC = a, AC = b, diện tích bằng S. Tìm các góc của tam giác, biết \(S=\frac{1}{4}\left(a^2+b^2\right)\)
cho tam giác abc vuông tại a và ab <ac , m là trung điểm của bc .trên tia đối của tia ma lấy điểm d sao cho ma =md .
a) chứng minh : ab=cd
b) so sánh góc cam và góc cdm
c) gọi i là trung điểm của ac . chứng minh tam giác ibd là tam giác cân
Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC) và phân giác BE của tam giác ABC(E thuộc AC) cắt nhau tại I. Chứng minh:
a) IH. AB=IA. BH
b) BHA~BAC; AB^2=BH. BC
c) IH/IA=AE/EC
d) Tam giác AIE cân