Cho tam giác ABC có M (4;0), N(5;2), P(2;3) lần lượt là trung điểm AB, AC, BC
a) tìm tọa độ các điểm A, B, C
b) tính đọ dài đoạn thẳng AP
c) tìm các điểm đối xứng với A qua Ox, Oy
d) Tìm tọa độ tâm I của đường tròn ngoại tiếp tam giác ABC
e) Tìm điểm E thuộc Ox sao cho E, N, P thẳng hàng
giúp em với ạ ❤️
a: M(4;0) là trung điểm của AB
=>\(\left\{{}\begin{matrix}x_A+x_B=2\cdot4=8\\y_A+y_B=2\cdot0=0\end{matrix}\right.\)
N(5;2) là trung điểm của AC
=>\(\left\{{}\begin{matrix}x_A+x_C=2\cdot5=10\\y_A+y_C=2\cdot2=4\end{matrix}\right.\)
P(2;3) là trung điểm của BC
=>\(\left\{{}\begin{matrix}x_B+x_C=2\cdot2=4\\y_B+y_C=2\cdot3=6\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_A+x_B=8\\x_A+x_C=10\\x_B+x_C=4\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_B-x_C=8-10=-2\\x_B+x_C=4\\x_A+x_C=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_B=-2+4=2\\x_B+x_C=4\\x_A+x_C=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x_B=\dfrac{2}{2}=1\\x_C=4-1=3\\x_A=10-3=7\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}y_A+y_B=0\\y_A+y_C=4\\y_B+y_C=6\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y_B-y_C=-4\\y_B+y_C=6\\y_A+y_B=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2y_B=2\\y_B+y_C=6\\y_A=-y_B\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}y_B=1\\y_C=6-1=5\\y_A=-1\end{matrix}\right.\)
Vậy: A(7;-1);B(1;1); C(3;5)
b: A(7;-1); P(2;3)
\(AP=\sqrt{\left(2-7\right)^2+\left(3+1\right)^2}=\sqrt{\left(-5\right)^2+4^2}=\sqrt{41}\)
c: A(7;-1)
Tọa độ điểm đối xứng với A qua trục Ox là:
\(\left\{{}\begin{matrix}x=x_A=7\\y=-y_A=1\end{matrix}\right.\)
Tọa độ điểm đối xứng với A qua trục Oy là:
\(\left\{{}\begin{matrix}x=-x_A=-7\\y=y_A=-1\end{matrix}\right.\)
e: E thuộc Ox nên E(x;0)
N(5;2);P(2;3); E(x;0)
\(\overrightarrow{NP}=\left(-3;1\right);\overrightarrow{NE}=\left(x-5;-2\right)\)
Để N,P,E thẳng hàng thì \(\dfrac{x-5}{-3}=\dfrac{-2}{1}\)
=>x-5=6
=>x=11
Vậy: E(11;0)