Giải phần góc nhé:
Gọi I là giao điểm của CE và BD.
Dễ thấy \(\Delta BEI\sim\Delta CDI\)
\(\Rightarrow\frac{EI}{DI}=\frac{BI}{CI}\)
\(\Rightarrow\frac{EI}{BI}=\frac{DI}{CI}=sin30^o=\frac{1}{2}\)
Bên cạnh đó có: \(\widehat{EID}=\widehat{BIC}\)
\(\Rightarrow\Delta EID\sim\Delta BIC\)
\(\Rightarrow\frac{ED}{BC}=\frac{EI}{BI}=\frac{DI}{CI}=\frac{1}{2}\)
\(\Rightarrow ED=MB=MC\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\)tam giác BDM đều
Tam giác CEB vuông tại E có M là trung điểm cạnh huyền.
\(\Rightarrow ME=MB=MC\left(1\right)\)
Tam giác CDB vuông tại E có M là trung điểm cạnh huyền.
\(\Rightarrow MD=MB=MC\left(2\right)\)
Từ (1) và (2) \(\Rightarrow MD=ME\left(3\right)\)
Tam giác AEC vuông tại E
\(\Rightarrow\widehat{ACE}=90^o-\widehat{CAE}=90^o-60^o=30^o\)
Dễ thấy tứ giác EDCB nội tiếp đường tròn tâm M.
\(\Rightarrow\widehat{EMD}=2\widehat{ECD}=2.30^o=60^o\left(4\right)\)
Từ (3) và (4) \(\Rightarrow\Delta BDM\) đều.