\( AB^2=BC^2+CA^2-2.BC.CA.cos120=661\Rightarrow\sqrt{661}\)
\( AB^2=BC^2+CA^2-2.BC.CA.cos120=661\Rightarrow\sqrt{661}\)
Cho tam giác vuông ABC tại C có AC = 9, CB = 5. Tính A B → . A C →
A. 25
B. 81
C. 106
D. 53
Cho tam giác ABC có AB = 4, AC = 6, A ^ = 120 ° . Độ dài cạnh BC là:
A. 19
B. 2 19
C. 3 19
D. 2 7
Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC
Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.
Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.
Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC
Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.
Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.
Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC
Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.
Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.
Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.
Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC
Cho tam giác ABC có AC=8;BC=6;C=30o . Tính độ dài cạnh AB và diện tích của tam giác AB
Tam giác ABC có AB= AC= a ; A B C ^ = 120 ° . Tính độ dài vectơ tổng A B → + A C →
A.
B.
C.
D.
Bài 4:Cho tam giác ABC có A=60 độ,B=45 độ,AC=2.Tính độ dài cạnh AB,BC,C
Câu 6: Cho tàm giác ABC có A(1; - 1) ;B(2; 0) ;C(3; 5) a) Tìm tọa độ các vecto AB ,AC ,BC b) Tính độ dài các cạnh của tam giác ABC. Từ đó tính chu vi tam giác. c) Tìm tọa độ trung điểm các cạnh và tìm tọa độ trọng tâm của tam giác ABC. d) Tìm tọa độ điểm D để tứ giác ABCD là hnh bình hành e) Tọa độ chân đường cao xuất phát từ A của tam giác. Đ) Tính góc A?
Cho tam giác ABC có diện tích là 36 𝑐𝑚2, độ dài cạnh AB = 8 cm; cạnh AC = 12
cm. Trên cạnh AB kéo dài về phía B lấy điểm M; trên cạnh AC kéo dài về phía C lấy N
sao cho BM = 5 cm, CN = 4 cm. Tính diện tích hình tam giác AMN.
Tam giác ABC có B ^ = 60 ° , C ^ = 45 ° và AB = 5. Tính độ dài cạnh AC.
A. A C = 5 6 2 .
B. A C = 5 3 .
C. A C = 5 2 .
D. AC = 10
Cho 3 điểm A(-1;2), B(0;4), C(3;2). a) Tính tọa độ AB , AC, BC và diện tích tam giác ABC. b) Tính tọa độ trung điểm I của cạnh AB, trọng tâm G tam giác ABC. c) viết pt tổng quát và tham số của cạnh AB, BC, AC. d) Viết pt tổng quát và tham số của đường thẳng d qua A và song song BC. e) Viết pt đường tròn có tâm B và qua A. f) Viết pt tiếp tuyến của đường tròn (C) vừa tìm được biết tiếp tuyến vuông góc BC.