cho tam giác ABC nội tiếp (O;R). D là điểm thuộc cung BC không chứa điểm A. Kẻ DH, DK, DI lần lượt vuông góc với đường thẳng BC, AB, AC. Xác định vị trí của D để \(\dfrac{AB}{DK}+\dfrac{AC}{DI}+\dfrac{BC}{DH}\) đạt giá trị nhỏ nhất
Cho tam giác ABC. Gọi D,E,F lần lượt là trung điểm của BC, CA,AB. Gọi M,N, P lần lượt là chân đường cao hạ từ A, B, C. Các điểm G, I, K là trung điểm của ba đoạn nối từ trực tâm của tam giác đến ba đỉnh A, B, C. chứng minh chín điểm D,E,F, M, N, P, G, I, K thuộc một đường tròn(đường tròn Ơ le hay đường tròn 9 điểm)
Cho tam giác ABC đều, dường cao AH, M là trung điểm thuộc cạnh BC. Kẻ ME vuông góc AB, MF vuông góc AC. Gọi I là trung điểm AM.
a) Tứ giác HEFI là hình gì
b) Gọi G là trọng tâm tam giác ABC. C/M: FE, HI, MG đồng quy
c) Tìm trên cạnh BC sao cho EF bé nhất. Tính EF khi đó biết cạnh tam giác đều là a
( KHÔNG CẦN VẼ HÌNH CŨNG ĐƯỢC; GỢI Ý SƠ SƠ CHO MINK LÀ DC RÙI... THANKS:))
cho tam giác ABC nhọn và điểm D nằm trong tam giác.mM,F,E LẦN LƯỢT LÀ CÂN ĐƯỜNG VUÔNG GÓC HẠ TỪ D xuống các cạnh BC,AB,AC. Tính tỉ số diện tích MEF và diên tích ABC
cho tam giác ABC đều, gọi O là trung điểm của cạnh BC. các điểm D , E lần lượt di động trên các cạnh AB, AC sao cho góc DOE = 60 độ. CM tích BD*CE không đổi.
Giúp mình câu c với!! Bạn nào còn thức không ? mình cần gấp
Cho nửa đường tròn (O) đường kính AB. Điểm M di chuyển trên nửa đường tròn . tiếp tuyến M và B của nửa đường tròn (O) cắt nhau ở Đ . Qua O kẻ đường thẳng song song với MB , cắt tiếp tuyến tại M ở C và cắt tiếp tuyến tại B ở N
a. chứng minh tam giác CDN là tam giác cân
b. chứng minh AC là tiếp tuyến của nửa đường tròn (O)
c. Tìm vị trí của M trên nửa đường tròn để diện tích tam giác CDN đạt giá trị nhỏ nhất
Bài 1: Cho tứ giác ABCD có C + D = 900 . Gọi M, N, P, Q lần lượt là trung điểm của AB, BD, DC và CA. Cmr : Bốn điểm M,N,P,Q cùng nằm trên một đường tròn.
Bài 2 : Cho hình thoi ABCD. Đường trung trực của cạnh AB cắt BD tại E và cắt AC tại F. Cm E, F lần lượt là tâm của đường tròn ngoại tiếp tam giác ABC và ABD.
Mọi người giúp mình với :)
Giúp mình với . ( giải chi tiết và cái hình luôn)
Bài 1,Cho tam giác ABC nhọn. Đường tròn đường kính BC cắt AB ở N và cắt AC ở M. Gọi H là
giao điểm của BM và CN.
a) Tính số đo các góc BMC và BNC.
b) Chứng minh AH vuông góc BC.
c) Chứng minh tiếp tuyến tại N đi qua trung điểm AH
Bài 2, Cho đường tròn tâm (O; R) đường kính AB và điểm M trên đường tròn sao cho góc
MAB = 60độ . Kẻ dây MN vuông góc với AB tại H.
a) Chứng minh AM và AN là các tiếp tuyến của đường tròn (B; BM).
b) Chứng minh MN2 = 4AH.HB .
c) Chứng minh tam giác BMN là tam giác đều và điểm O là trọng tâm của nó.
d) Tia MO cắt đường tròn (O) tại E, tia MB cắt (B) tại F. Chứng minh ba điểm N, E, F thẳng hàng.
Bài 3, Cho đường tròn (O; R) và điểm A cách O một khoảng bằng 2R, kẻ tiếp tuyến AB tới đường
tròn (B là tiếp điểm).
a) Tính số đo các góc của tam giác OAB
b) Gọi C là điểm đối xứng với B qua OA. Chứng minh điểm C nằm trên đường tròn O và AC
là tiếp tuyến của đường tròn (O).
c) AO cắt đường tròn (O) tại G. Chứng minh G là trọng tâm tam giác ABC.
Bài 4, Từ điểm A ở ngoài đường tròn (O; R) kẻ hai tiếp tuyến AB, AC (với B và C là hai tiếp điểm). Gọi H là giao điểm của OA và BC.
a) Chứng minh OA vuông góc BC và tính tích OH.OA theo R
b) Kẻ đường kính BD của đường tròn (O). Chứng minh CD // OA.
c) Gọi E là hình chiếu của C trên BD, K là giao điểm của AD và CE. Chứng minh K là trung điểm CE.
cho tam giác ABC vuông tại A (AB<AC) đường cao AH. Đặt BC=a, CA=b, AB=c, AH=h. cm tam giác có các cạnh a-h, b-c,h là 1 tam giác vuông