Bài 1. PHƯƠNG TRÌNH ĐƯỜNG THẲNG

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hạ Băng Băng
Cho tam giác ABC có B(-4;5). Có phương trình 2 đường cao của tam giác ABC AH:5x+3y-4=0 ,CK:3x+8y+13=0. Tìm 3 đỉnh
Minh Hồng
4 tháng 2 2021 lúc 1:18

\(C\in CK\Rightarrow C\left(x;-\dfrac{3}{8}x-\dfrac{13}{8}\right)\)

\(\Rightarrow\overrightarrow{BC}=\left(x+4;-\dfrac{3}{8}x-\dfrac{53}{8}\right)\)

AH có VTPT là \(\overrightarrow{n}=\left(5;3\right)\)

Do \(AH\) vuông góc \(BC\Rightarrow\overrightarrow{BC}=k\overrightarrow{n}\)

\(\Rightarrow\left\{{}\begin{matrix}x+4=5k\\-\dfrac{3}{8}x-\dfrac{53}{8}=3k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{361}{39}\\k=-\dfrac{41}{39}\end{matrix}\right.\Rightarrow C\left(-\dfrac{361}{39};\dfrac{24}{13}\right)\).

\(A\in AH\Rightarrow A\left(x;-\dfrac{5}{3}x+\dfrac{4}{3}\right)\)

\(\Rightarrow\overrightarrow{BA}=\left(x+4;-\dfrac{5}{3}x-\dfrac{11}{3}\right)\)

\(CK\) có VTPT \(\overrightarrow{n}=\left(3;8\right)\)

Do \(CK\) vuông góc \(AB\Rightarrow\overrightarrow{BA}=k\overrightarrow{n}\)

\(\Rightarrow\left\{{}\begin{matrix}x+4=3k\\-\dfrac{5}{3}x-\dfrac{11}{3}=8k\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\dfrac{43}{13}\\k=\dfrac{3}{13}\end{matrix}\right.\Rightarrow A\left(-\dfrac{43}{13};\dfrac{89}{13}\right)\).


Các câu hỏi tương tự
Hạ Băng Băng
Xem chi tiết
Cao Hạ Anh
Xem chi tiết
nguyễn thu hồng
Xem chi tiết
nguyễn thu hồng
Xem chi tiết
Hạ Băng Băng
Xem chi tiết
Hạ Băng Băng
Xem chi tiết
Hạ Băng Băng
Xem chi tiết
Hạ Băng Băng
Xem chi tiết
Kuramajiva
Xem chi tiết