a,Xét △AHB và △AHC có
AB=AC (gt)
∠AHB=∠AHC=90 độ
AH:canh chung
=>△AHB=△AHC (ch.cgv)
b,Vì △AHB=△AHC (cmt)
=>∠BAH=∠CAH (2 góc tương ứng)
=>AH là tia phân giác của góc BAC
a,Xét △AHB và △AHC có
AB=AC (gt)
∠AHB=∠AHC=90 độ
AH:canh chung
=>△AHB=△AHC (ch.cgv)
b,Vì △AHB=△AHC (cmt)
=>∠BAH=∠CAH (2 góc tương ứng)
=>AH là tia phân giác của góc BAC
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H
a/ Chứng minh :tam giác AHB = tam giác AHCvà AH là tia phân giác của góc BAC
b/ Từ H kẻ HM vuông góc với AB, HN vuông góc với AC ,AH cắt MN tại K. Chứng minh AH vuông góc với MN
c/ Trên tia đối của tia HM lấy P sao cho H là trung điểm của MP, NP cắt BC tại E, NH cắt ME tại Q. Chứng minh: P, Q, K thẳng hàng.
Cho Tam giác ABC cân tại A(AB=AC).Gọi Am là tia phân giác của góc ngoài tại đỉnh A của tam giác.
a/Chứng minh Am//BC
b/Kẻ AH vuông góc với BC.Chứng minh AH là tia phân giác của góc BAC
Cho tam giác ABC có AB=AC. AH là tia phân giác của góc BAC . HD vuông góc với AB tại D. HE Vuông góc với AC tại E. Chứng minh
a. tam giác AHB=tam giác AHC
b. AH vuông góc với BC. góc HA= góc BHD
c. DE/BC
Cho tam giác ABC cân tại A, có 𝐵𝐴𝐶 = 700 . Vẽ AH vuông góc với BC. a) Chứng minh tam giác AHB = tam giác AHC và AH là tia phân giác của góc BAC. b) So sánh độ dài cạnh AH và BH. c) Từ H vẽ HD vuông góc AB và HE vuông góc AC . Tam giác ADE là tam giác gì ? Vì sao? d) Qua D vẽ đường thẳng DK vuông góc với BC tại K. Chứng minh DK < KE
Cho tam giác ABC có AB=AC , AH là tia phân giác của góc BAC (H e BC)
CM rằng :
a, Tam giác AHB=tam giác AHC ; HB=HC
b, AH vuông góc vs BC
c,Gọi K là trung điểm của AC . Chứng minh rằng : Giao điểm G của AH và BK là trọng tâm của tam giác ABC
d, Giả sử AH=9cm . Tính AG (giúp vs)
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H
a/ Chứng minh :tam giác AHB = tam giác AHCvà AH là tia phân giác của góc BAC
b/ Từ H kẻ HM vuông góc với AB, HN vuông góc với AC ,AH cắt MN tại K. Chứng minh AH vuông góc với MN
c/ Trên tia đối của tia HM lấy P sao cho H là trung điểm của MP, NP cắt BC tại E, NH cắt ME tại Q. Chứng minh: P, Q, K thẳng hàng.
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC .(h thuộc bc)
a. Chứng minh: tam giác ahb= tam giác ahc.
b. Từ điểm H kẻ HK vuông góc với AB tại K, HF vuông góc với AC tại F.
Chứng minh: hk=hf.
c. Chứng minh:kf song song bc
Cho tam giác ABC cân tại A, kẻ AH vuông góc với BC tại H
a/ Chứng minh :tam giác AHB = tam giác AHCvà AH là tia phân giác của góc BAC
b/ Từ H kẻ HM vuông góc với AB, HN vuông góc với AC ,AH cắt MN tại K. Chứng minh AH vuông góc với MN
c/ Trên tia đối của tia HM lấy P sao cho H là trung điểm của MP, NP cắt BC tại E, NH cắt ME tại Q. Chứng minh: P, Q, K thẳng hàng.
Cho tam giác ABC có AB= AC. Gọi H là trung điểm BC a) chứng minh tam giác ABH = tam giác ACH b) chứng minh AH vuông góc BC c) AH là tia phân giác góc BAC
cho tam giác ABC, AB=AC=10cm, BC=12. cho AH vuông góc với BC? a) chứng minh: tam giác AHB=tam giác AHC. chứng minh xem BC là tia phân giác? b) tia BC =AC tính chu vi tam giác ABC