a: Xét ΔABC có AH/AB=AK/AC
nên HK//BC
b: Xet ΔABC có HK//BC
nên AH/AB=HK/BC
=>HK/18=6/9=2/3
=>HK=12(cm)
c: Xét ΔABM có HI//BM
nên HI/BM=AI/AM
Xét ΔAMC có IK//MC
nên IK/MC=AI/AM
=>HI/BM=IK/MC
mà BM=CM
nên HI=IK
=>I là trung điểm của HK
a) APĐL ta lét vào ΔABC ta có :
\(\dfrac{AH}{AB}=\dfrac{AK}{AC}=\dfrac{2}{3}\Rightarrow KH//BC\)
b) Xét ΔABC có: KH // BC
\(\dfrac{AH}{AB}=\dfrac{KH}{BC}=\dfrac{2}{3}\)
\(\Rightarrow\dfrac{KH}{18}=\dfrac{6}{9}\Rightarrow KH=12\left(cm\right)\)
c)Theo bài ra ta có : M là trung điểm của BC => BM = CM (1)
xét tam giác ABC có :
HI//BC ( KH//BC)
\(\Rightarrow\dfrac{AI}{AM}=\dfrac{HI}{BM}\) (2)
Xét Tam giác ABC có:
KI//BC (KH//BC)
\(\Rightarrow\dfrac{AI}{AM}=\dfrac{KI}{CM}\) (3)
Từ (1) (2) và (3) => KI=HI => I là trung điểm của KH