a: Xet ΔAMB và ΔAMC có
AB=AC
góc BAM=góc CAM
AM chung
=>ΔAMB=ΔAMC
b: Xet ΔMDB và ΔMDC có
MB=MC
MD chung
DB=DC
=>ΔMBD=ΔMCD
a: Xet ΔAMB và ΔAMC có
AB=AC
góc BAM=góc CAM
AM chung
=>ΔAMB=ΔAMC
b: Xet ΔMDB và ΔMDC có
MB=MC
MD chung
DB=DC
=>ΔMBD=ΔMCD
Cho tam giác ABC có AC=AB. vẽ tia phân giác của góc A cắt BC ở D. gọi M là trung điểm nằm giữa A và D. CHỨNG MINH:
a/ tam giác AMB= tam giác AMC
b/ tam giác MBD= tam giác MCD
Cho tam giác ABC (AB=AC), AD là tia phân giác của góc BAC (D thuộc BC). Trên AD lấy điểm M bất kì sao cho M nằm giữa A và D. a,Chứng minh tam giác ABM=tam giác ACM và chứng minh tam giác BMC là tam giác cân. b,Đường thẳng BM cắt cạnh AC của tam giác ABC tại E, đường thẳng CM cắt cạnh AB của tam giác ABC tại F. Chứng minh AD vuông góc với EF c,Trên tia đối của tia CA lấy điểm K (K khác C), đường thẳng BK cắt tia đối của tia DA tại N. Chứng minh KN lớn hơn BN.
Cho tam giác ABC, AD là tia phân giác của góc BAC(D thuộc BC). Trên AD lấy M sao cho M nằm giữa A và D
a) chứng minh: tam giác ABM =tam giác ACM và tam giác BMC cân
b) BM cắt AC tại E, CM cắt AB tqij F. Chứng minh:AD vuông góc với EF
c) trên tia đối của CA lấy K( khác C), BK cắt tia đối của tia DA tại N. Chứng minh: KN>BN
cho tam giác ABC ( AB=AC ) , AD là tia phân giác của góc BAC (D thuộc BC) .Trên AD lấy điểm M sao cho M nằm giữa A và D
a) Chứng minh tam giác ABM = tam giác ACM và chứng minh tam giác BMC cân
b)Đường thẳng BM cắt cạnh AC của tam giác ABC tại E,đường thẳng CM cắt cạnh AB của tam giác ABC tại F.Chứng minh AD \(\perp\)EF
c) Trên tia đối của CA lấy điểm K (K khác C ), đường thẳng BF cắt tia đối của tia DA tại N.Chứng minh KN > BN
Cho tam giác ABC có AB=AC. Vẽ tia phân giác của góc A cắt BC ở D gọi M là 1 điểm nằm giữa A và D. Chứng Minh
a) Tam giác AMB=Tam giác AMC
b)Tam giác MBD=Tam giác MCD
Cho tam giác ABC có AB=AC, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy E sao cho AD= AE
a. Chứng minh rằng tâm giác AMB = tam giác AMC
b. Chứng minh rằng AM là tia phân giác của góc A và AM vuông góc với BC
c. Gọi K là giao điểm của AM và DE. Chưng minh AK vuông góc với DE
d. trên tia đối của tia ED lấy đeiểm F sao cho FE= MC, gọi H là trung điểm của EC. Chứng minh 3 điểm M, H, F thẳng hàng
cho tam giác abc có AB=AC,gọi AM là tia phân giác của góc A(M thuộc BC)
a Chứng minh tam giác AMB = tam giác AMC
b Chứng minh M là trung điểm của cạnh BC và AM ⊥ BC
c Trên tia AM lấy điểm K sao cho MA = MK. Chứng minh AB = CK và AB // CK
Cho tam giác ABC vuông tại A (AB < AC). Vẽ AD là tia phân giác của góc BAC (D thuộc BC). Trên đoạn AC lấy điểm H sao cho AH = AB. a) Chứng minh góc ADH = góc ADB b) Tia HD cắt AB tại E. Chứng minh : tam giác AHE = tam giác ABC và AD ^ EC c) Gọi G là trung điểm của ED. Tia AD cắt CG tại X. Chứng minh 3.DX < 2.DC