Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh: a) Tam giác ADB = ADC; b) AD là tia phân giác của góc BAC; c) AD vuông góc BC
Cho tam giác ABC có AB = AC, gọi D là trung điểm của BC. Chứng minh
a) Tam giác ADB = ADC
b) AD là tia phân giác của góc BAC
c) AD vuông góc BC
Cho tam giác ABC có góc A = 90 độ, AC > AB, kẻ AH vuông góc với BC, trên tia HC lấy điểm D sao cho HD = HB, kẻ CE vuông góc với AD kéo dài (E thuộc AD).
a) Chứng minh tam giác ABD cân.
b) Chứng minh góc DAH = góc ACB.
c) Chứng minh CB là tia phân giác góc ACE.
d) Chứng minh DI vuông góc AC (I thuộc AC) và ba đường AH, ID và CE đồng quy.
e) So sánh AC và CD.
f) Tìm điều kiện của tam giác ABC để I là trung điểm của AC.
Bài 2: Cho tam giác ABC có AB=AC, kẻ AD vuông góc với BC. Chứng minh rằng AD là tia phân giác của góc A?
Cho tam giác ABC có góc B bằng góc C, kẻ AH vuông góc với BC, H thuộc BC. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BC = CE. Chứng minh :
a. AB = AC
b. Tam giác ABD = Tam giác ACE
c. Tam giác ACD = Tam giác ABE
d. AH là tia phân giác của góc DAE
e. Kẻ BK vuông góc với AD, CI vuông góc với AE. Chứng minh ba đường thẳng AH, BK, CI cùng đi qua một điểm.
Tam giác ABC có M là trung điểm của BC và AM là tia phân giac của góc A .Kẻ MH vuông góc với AB (H thuộc AC) và MK vuông góc với AC ( K thuôc AC) . Chứng minh rằng :
a)MH =MK, AH = AK
b)AD là tia phân giác của góc A và DA là tia phân giác của góc D
c)AD vuông góc với BC và AD đi qua trung điểm của BC
Cho tam giác ABC vuông tại A; AB=6cm; AC=8cm. BM là đường phân giác của góc B. Kẻ MK vuông góc với BC tại K
a, Tính BC
b, Chứng minh: AM=KM
c, Kẻ AD vuông góc với BC tại D. Chứng minh: AK là phân giác của góc DAC
d, Chứng minh: AB+AC < BC+AD
cho tam giac ABC vuông tại A và góc C< góc B. Vẽ AH vuông góc BC. Trên tia BH lấy điểm D sao cho HD=HB. kẻ DI cuông góc AC và CK vuông góc AD. chứng minh: AB=AD. CB là tia phân giác của góc ACK. AH, DI, CK đồng quy
Bài 1: Cho tam giác ABC ở phía ngoài tam giác ABC vẽ các tam giác vuông tại A là ABD và ACE có AB=AD, AC=AE. Kẻ AH vuông góc với BC, gọi I là giao điểm của AH với DE. Kẻ DM vuông góc với IH, EL vuông góc với IH. Chứng minh:
a) Tam giác HBD= tam giác MAD
b) Tam giác HCA= tam giác LEA
c) ID=IE
Bài 2: Cho tam giác ABC có AB>AC. Trên tia đối của tia CA lấy điểm D sao cho CD=AB. Gọi I là giao điểm của đường trung trực của BC và AD. Chứng minh:
a) Tam giác AIB= tam giác DIC
b) AI là tia phân giác của góc BAC
c) Kẻ IE vuông góc với AB. Chứng minh AE=\(\frac{1}{2}\) AD
Cho tam giác ABC vuông ở A, AC > AB. Kẻ AH vuông góc với BC. Trên tia HC lấy điểm D sao cho HD = HB. Kẻ CE vuông góc với AD kéo dài. Chứng minh rằng:
a) Tam giác AHB = tam giác AHD
b) góc BAH = góc ACB
c) CB là tia phân giác góc ACE
d) Gọi giao điểm của AH và CE là K. Chứng minh KD // AB
e) Chứng minh AC > CD