a: Xet ΔHEA vuông tại E và ΔHIB vuông tại I có
góc EHA=góc IHB
=>ΔHEA đồng dạng với ΔHIB
b: Xét ΔMIB vuông tại M và ΔICH vuông tại I có
góc MIB=góc ICH
=>ΔMIB đồng dạng với ΔICH
=>IB/CH=IM/IC
=>IB*IC=CH*IM
a: Xet ΔHEA vuông tại E và ΔHIB vuông tại I có
góc EHA=góc IHB
=>ΔHEA đồng dạng với ΔHIB
b: Xét ΔMIB vuông tại M và ΔICH vuông tại I có
góc MIB=góc ICH
=>ΔMIB đồng dạng với ΔICH
=>IB/CH=IM/IC
=>IB*IC=CH*IM
Cho tam giác ABC có hai đường cao AD và BE cắt nhau tại H. Tia CH cắt AB tại K. Kẻ DM vuông góc AB tại M, từ M vẽ đường thẳng song song với KE cắt AC tại N. Chứng minh DN vuông góc AC
Cho tam giác ABC (AB nhỏ hơn AC), có 3 góc nhọn và đường cao AH. Qua H vẽ HM vuông góc với AC tại M và HN vuông góc với AC tại N.
a) Cho AC = 6cm, AM = 3cm. Chứng minh diện tích tam giác ACB gấp 4 lần tam giác AMN
b) Vẽ đường cao BD của tam giác ABC cắt AH tại E. Qua D vẽ đường thẳng song song với MN cắt AB tại F. Chứng minh góc AEF = ABC
cho tam giác ABC nhọn có 2 đường cao AD và BE cắt nhau tại H. Tia HC cắt AB tại K. Kẻ DM vuông góc AB tại M, từ M vẽ đường thẳng song song với KE cắt AC tại N. Chứng minh DN vuông góc AC
Cho tam giác ABc nhọn có ha đường cao AD và BE cắt nhau tại H. Tia HC cắt AB tại K. Kẻ DM vuông góc AB tại M, từ M vẽ đường thẳng song song với KE cắt AC tại N. Chứng minh DN vuông góc AC
cho tam giác ABC nhọn có 2 đường cao AD và BE cắt nhau tại H. Tia HC cắt AB tại K. Kẻ DM vuông góc AB tại M, từ M vẽ đường thẳng song song với KE cắt AC tại N. Chứng minh DN vuông góc AC
Cho tam giác nhọn ABC, AB<AC, đường cao AH, qua H vẽ HM vuông góc AB tại M và HN vuông góc AC tại N
A. chứng minh tam giác AMH đồng dạng tam giác AHB
B.AH^2 = AN. AC
c.neu ac=6, AM=3, chứng minh diện tích tam giác ABC gấp 4 lần diện tích tam giác AMN
d.vẽ đường caoBD của tam giác ABC cắt AH tại E . Qua D vẽ đường thẳng song song MN cắt AB tại F. chứng minh góc AEF= góc ABC
Cho tam giác có ba góc nhọn, hai đường cao BE, CF cắt nhau tại H (E?AC, F?AB ). Chúng minh: a) tam giác AEB ?đồng dạng với ?. tam giác AFC b)CM tam giác AEF ? đồng dạng với ?.TAM GIÁC ABC c) Tia AH cắt BC tại D. Vẽ DM vuông góc với AB tại M, DN vuông góc với AC tại N, DK vuông góc với CF tại K. Chứng minh 3 điểm M, K, N thẳng hàng. giải giùm tớ câu c thôi
cho tam giác ABC có 3 góc nhọn . Các đường vao AD,BE,CF cắt nhau tại H
1. Chứng minh rằng tam giác AEF đồng dạng với tam giác ABC
2. Chứng minh rằng :BH.BE+CH.CF=BC^2
3. Qua F kẻ đường thẳng vuông góc với FE cắt BE tại M . chứng minh FB.EC=FC.BM và EF.BC+BF.CE=BE.CF
4. Kẻ FI,EJ cùng vuông góc với BC (I,J thuộc BC). Các điểm K,L lần lượt thuộc AB,AC sao cho IK song song với AC,LJ song song với AB . Chứng minh 3 đường thẳng EI,FJ và KL đồng quy
Cho tam giac abc có ba góc nhọn, hai đường cao BE, CF cắt nhau tại H (EAC, FAB ).
Chứng minh: a) tam giác AEB đồng dạng với . tam giác AFC
b)CM tam giác AEF đồng dạng với TAM GIÁC ABC
c) Tia AH cắt BC tại D. Vẽ DM vuông góc với AB tại M, DN vuông góc với AC tại N, DK vuông góc với CF tại K. Chứng minh 3 điểm M, K, N thẳng hàng.
giải giùm tớ câu c thôi