Xet ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE và góc ADB=góc AEC
=>góc HBD=góc KCE
=>góc IBC=góc ICB
=>IB=IC
mà AB=AC
nên AI là trung trực của BC
=>AI vuông góc BC
=>AI vuông góc DE
mà ΔADE cân tại A
nên AI là trung trực của DE
Xet ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔABD=ΔACE
=>AD=AE và góc ADB=góc AEC
=>góc HBD=góc KCE
=>góc IBC=góc ICB
=>IB=IC
mà AB=AC
nên AI là trung trực của BC
=>AI vuông góc BC
=>AI vuông góc DE
mà ΔADE cân tại A
nên AI là trung trực của DE
cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc với AD tại H, kẻ CK vuông góc với AE tại K. Gọi I là giao điểm của hai đường thẳng BH và CK. Chứng minh rằng:
a) tam giác ABH= tam giác ACK
b) Ai là tia phân giác của góc DAE c)
HK song song với DE
Cho tam giác ABC cân tại A . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB
lấy điểm E sao cho BD= CE . Kẻ BH vuông góc với AD tại H , kẻCK vuông góc với AE tại K . Gọi I là giao điểm của hai đường thẳng BH và CK . Chứng minh rằng:
a) D = D ABH ACK .
b) AI là tia phân giác của DAE .
c) HK DE / /
Cho tam giác ABC cân tại A . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB
lấy điểm E sao cho BD= CE . Kẻ BH vuông góc với AD tại H , kẻCK vuông góc với AE tại K . Gọi I là giao điểm của hai đường thẳng BH và CK . Chứng minh rằng:
a) ABH =ACK .
b) AI là tia phân giác của DAE .
c) HK DE / /
ko vẽ hình
Cho \(\Delta\)\(ABC\) cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, kẻ CK vuông góc với AE tại K. Gọi I là giao điểm của hai đường thẳng BH và CK. CMR: \(\Delta\)\(ABH\) = \(\Delta\)\(ACK\)
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD, kẻ CK vuông góc với AE. BH kéo dài căt CK tại I. Chứng minh rằng:
a, △AHK, △IHK, △DEA, △IDE là tam giác cân
b, AI là phân giác của các góc DAE, BAC, BIC
Cho tam giác ABC cân tại A,trên tia đối của tia CB lấy E và trên BC lấy D sao cho BD=CE.
a) Chứng minh tam giác ADE cân.
b) Kẻ BH vuông góc AD tại H,CK vuông góc AE tại K.Chứng minh BH=CK và HK//BC.
c) Gọi O là giao điểm của BH và CK. Tam giác DBC là tam giác gì,tại sao?
d) Gọi M là trung điểm của DC.Chứng minh AM,BH,CK đồng quy.
Cho tam giác ABC cân tại A. Trên tia đối của tai BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông với AD, kẻ CK vuông góc với AE. Chứng minh rằng: BH = CK
Tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD. Kẻ CK vuông góc với AE.
c) Gọi O là giao điểm của HB và KC. Chứng minh: OBC cân.
d) Chứng minh: AO là tia phân giác của góc DAE
e) Gọi I là trung điểm của BC. Chứng minh: A, I, O thẳng hàng.
Có ai ko giải giùm mk bài này (ko vẽ hình)
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, kẻ CK vuông góc với AE tại K. Gọi I là giao điểm của hai đường thẳng BH và CK. CMR: \(\Delta{ABD}\) = \(\Delta{ACE}\)