Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}=\widehat{CAK}\)
Do đó: ΔABH=ΔACK
Xét ΔABD và ΔACE có
AB=AC
\(\widehat{ABD}=\widehat{ACE}\)
BD=CE
Do đó: ΔABD=ΔACE
Suy ra: AD=AE
Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}=\widehat{CAK}\)
Do đó: ΔABH=ΔACK
Mọi ngừi ơi giúp mk ý cuối cùng nha
Cho \(\Delta\)\(ABC\) cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, kẻ CK vuông góc với AE tại K. Gọi I là giao điểm của hai đường thẳng BH và CK.
CMR: AI là tia phân giác của \(\widehat{DAE}\)
cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc với AD tại H, kẻ CK vuông góc với AE tại K. Gọi I là giao điểm của hai đường thẳng BH và CK. Chứng minh rằng:
a) tam giác ABH= tam giác ACK
b) Ai là tia phân giác của góc DAE c)
HK song song với DE
Cho tam giác ABC cân tại A . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB
lấy điểm E sao cho BD= CE . Kẻ BH vuông góc với AD tại H , kẻCK vuông góc với AE tại K . Gọi I là giao điểm của hai đường thẳng BH và CK . Chứng minh rằng:
a) D = D ABH ACK .
b) AI là tia phân giác của DAE .
c) HK DE / /
Cho tam giác ABC cân tại A . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB
lấy điểm E sao cho BD= CE . Kẻ BH vuông góc với AD tại H , kẻCK vuông góc với AE tại K . Gọi I là giao điểm của hai đường thẳng BH và CK . Chứng minh rằng:
a) ABH =ACK .
b) AI là tia phân giác của DAE .
c) HK DE / /
Có ai ko giải giùm mk bài này (ko vẽ hình)
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, kẻ CK vuông góc với AE tại K. Gọi I là giao điểm của hai đường thẳng BH và CK. CMR: \(\Delta{ABD}\) = \(\Delta{ACE}\)
Bài 13. Cho ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. KẻBH vuông góc với AD tại H, kẻCK vuông góc với AE tại K. Gọi I là giao điểm của hai đường thẳng BH và CK. CMR:
a)ABD = ACE.
b) ABH = ACK.
c) AI là tia phân giác góc DAE.
d) HK // DE.
Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD, kẻ CK vuông góc với AE. Chứng minh rằng:
a, BH = CK
B, △ABH = △ACK
Cho tam giác ABC cân tại A , trên tia đối của BC lấy D , trên tia đối của CB lấy E sao cho B = CE . Kẻ BH vuông góc với AD tại H , CE vuông góc AE tại K . Gọi I là giao điểm của hai đường thẳng BH và CK . Chứng minh rằng
a) Tam giác ABH = tam giác ACK
b) AI là phân giác của góc DAE
c) HK song song với DE
cho tam giác ABC cân tại A.Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD=CE. Kẻ BH vuông góc với AD , kẻ CK vuông góc với AE . Chứng minh rằng :
a) BH=CK
b)tam giác ABH=tam giác ACK