a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
b: Xét tứ giác ABIC có
H là trung điểm của BC
H là trung điểm của AI
Do đó: ABIC là hình bình hành
Suy ra: IB=AC
a: Xét ΔAHB và ΔAHC có
AH chung
HB=HC
AB=AC
Do đó: ΔAHB=ΔAHC
Ta có: ΔABC cân tại A
mà AH là đường trung tuyến
nên AH là đường cao
b: Xét tứ giác ABIC có
H là trung điểm của BC
H là trung điểm của AI
Do đó: ABIC là hình bình hành
Suy ra: IB=AC
cho tam giác abc cân tại a(ac>bc) kẻ ah vuông góc bc (h thuộc bc) a)chứng minh tam giác abh=tam giác ach, từ đó suy ra h là trung điểm của đoạn thẳng bc b)trên tia đối của tia ha lấy điểm d sao cho h là trung điểm của ad ,chứng minh tam giác abh = tam giác dch c)chứng minh tam giác acd cân d)trên tia đối cb lấy điểm e sao cho cb=ce chứng minh bae là góc nhọn
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC (H thuộc BC)
a) Chứng minh tam giác AHB = tam giác AHC
b) Giả sử AB=AC=5cm, BC=8cm. Tính AH
c) Trên tia đối của tia HA lấy điểm M sao cho HM=HA. Chứng minh tam giác ABM cân
d) Chứng minh BM//AC
Cho tam giac ABC cân tại A. Kẻ AH vuông góc với BC (H thuộc BC) a/Chứng minh: tam giác AHB=tam giác AHC b/Giả sử AB=AC=5cm,BC=8cm. Tính độ dài AH c/Trên tia đối của tia HA lấy điểm M sao cho HM=HA. Chứng minh: tam giác ABM cân d/Chứng minh BM// AC Cho mik cái hình
Bài 2. Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H.
a) Chứng minh: tam giác AHB = tam giác AHC .
b) Trên tia đối của tia HA, lấy điểm K sao cho HK= HA. Chứng minh: tam giác AHB = tam giác KHC .
c) Chứng minh: tam giác ACK là tam giác cân.
d) Qua A kẻ đường thẳng song song với BC, cắt CK tại I. Chứng minh: KI = 2AC.
Cho tam giác ABC vuông tại A (AB>AC). Gọi M là trung điểm của BC. Trên tia đối của tia MA lấy điểm D sao cho MD=MA
a) Cho AB=8cm, BC=10cm. Tính AC
b) Chứng minh tam giác AMB = tam giác DMC, từ đó suy ra CD vuông góc với AC
c) Vẽ AH vuông góc với BC tại H, trên tia đối của AH lấy E sao cho HE = HA. Chứng minh tam giác ACE là tam giác cân
d) Chứng minh BD = CE
Cho tam giác ABC nhọn có AB=AC. Gọi H là trung điểm BC
a) Chứng minh tam giác AHB = tam giác AHC và AH vuông tại BC.
b) Trên tia đối của tia HA lấy điểm M sao cho HM=HA .Chứng minh tam giác AHB = tam giác MHC và MC // AB
Tam giác ABC cân tại A,AH vuông góc BC
a) Chứng minh tam giác AHB = tam giác AHC
b)Gỉa sử AB=AC=5cm;BC=8cmTính AH
c) Trên tia đối của tia HA lấy điểm M sao cho HA=HM.Chứng minh tam giácABM cân
d) Chứng minh BM //AC
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điêm D sao cho HD= HA. Trên tia đối của tia CB lấy điểm E sao cho CE=CB. a) Chứng minh: Tam giác ACD cân b) Chứng minh: Tam giác ACE=Tam giác DCE c) Đường thẳng AC cắt DE tại K. Chứng minh: AB+BC> 2DK Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H, trên tia đối của tia HA lấy điêm D sao cho HD= HA. Trên tia đối của tia CB lấy điểm E sao cho CE=CB.
a) Chứng minh: Tam giác ACD cân
b) Chứng minh: Tam giác ACE=Tam giác DCE
c) Đường thẳng AC cắt DE tại K. Chứng minh: AB+BC> 2DK
cho tam giác ABC vuông tại A (AB>AC). M là trung điểm cạnh BC. trên tia đối của tia MA lấy điểm D sao cho MD=MA.
a) cho ab=8 bc=10 .Tính Ac
b)chứng minh tam giác AMB=tam giác DMC, từ đó suy ra CD vuông góc với AC
c)vẽ ah vuông góc với bc tại h trên tia đối của ha lấy e sao cho he=ha
d)chứng minh bd=ce
cho tam giác ABC vuông tại A có góc ACB=65 độ.Kẻ AH vuông góc BC tại H,trên tia đối của tia HA lấy điểm E sao cho HE=HA.Gọi M là trung điểm cạnh BC,trên tia đối của MA lấy điểm D sao cho MD=MA.
a,Tính số đo góc ABC và so sánh AB và AC.
b,Chứng minh tam giác ABH bằng tam giác EBH,từ đó suy ra tam giác ABE cân tại B
c, Chứng minh tam giác BEC vuông tại E
d,Chứng minh ED song song với BC