a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
a: Xét ΔABH và ΔACH có
AB=AC
AH chung
HB=HC
Do đó: ΔABH=ΔACH
Cho tam giác ABC nhọn có AB = AC.Gọi H là trung điểm của BC
a) Chứng minh \(\Delta\)AHB = \(\Delta\)AHC và AH \(\perp\) BC
b) Trên tia đối của tia HA lấy điểm M sao cho HM = HA.Chứng minh \(\Delta\)AHB = \(\Delta\)MHC và MC // AB
Cho tam giác ABC có AB = AC và AC > BC> Gọi H là trung điểm cạnh BC
a) Chứng minh : tam giác AHB = tam giác AHC
b) Trên tia đối của tia HA lấy điểm M sao cho HM = HA. CMR AB//MC
c) Từ B vẽ đường thẳng vuông góc với AC tại K, trên tia đối của tia KC lấy điểm D sao cho KD = KC. Chứng minh : Bk là tia phân giác của góc DBC
d) Trên tia đối của tia BA lấy điểm E sao cho BE = AD. Chứng minh CE = CA
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC (H thuộc BC)
a) Chứng minh tam giác AHB = tam giác AHC
b) Giả sử AB=AC=5cm, BC=8cm. Tính AH
c) Trên tia đối của tia HA lấy điểm M sao cho HM=HA. Chứng minh tam giác ABM cân
d) Chứng minh BM//AC
Cho tam giac ABC cân tại A. Kẻ AH vuông góc với BC (H thuộc BC) a/Chứng minh: tam giác AHB=tam giác AHC b/Giả sử AB=AC=5cm,BC=8cm. Tính độ dài AH c/Trên tia đối của tia HA lấy điểm M sao cho HM=HA. Chứng minh: tam giác ABM cân d/Chứng minh BM// AC Cho mik cái hình
Cho tam giác ABC vuông tại A, AB < AC, đường cao AH ( H thuộc BC). Trên tia tia đối của tia HA lấy M sao cho HM = HA. Trên tia đối của tia HB lấy D sao cho HD = HB
a) Chứng minh: tam giác AHB = tam giác MHD
b) Chứng minh: AB//MD; MD vuông góc AC
c) Gọi E là trung điểm của AB, F là trung điểm của MD. Chứng minh: E, H, F thẳng hàng
Cho tam giác ABC vuông tại A, có AB = AC. Gọi H là trung điểm của BC
a)Chứng minh tam giác AHB = tam giác AHC
b)Chứng minh góc BAH = góc ACH
c)Trên tia đối của tia AH lấy điểm E sao cho EA = BC, trên tia đối của tia AC lấy điểm F sao cho CF = AB. Chứng minh BE = BF và BE vuông góc với BF
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ AH vuông góc với BC tại H. Trên đoạn
thằng HC lấy điểm E sao cho HE = HB.
a) Chứng minh tam giác AHB = tam giác AHE
b) Trên tia đối tia HA lấy điểm D sao cho HD = HA . Chứng minh DE // AB.
c) Chứng minh góc EAC = góc EDC
d) Tia DE cắt AC tại M . Từ M kẻ đường thẳng song song với AD cắt DC tại N . Chứng
minh: A, E, N thằng hàng.
Cho tam giác ABC có ba góc nhọn (AB < AC). Kẻ AH vuông góc với BC tại H. Trên đoạn
thằng HC lấy điểm E sao cho HE = HB.
a) Chứng minh tam giác AHB = tam giác AHE
b) Trên tia đối tia HA lấy điểm D sao cho HD = HA . Chứng minh DE // AB.
c) Chứng minh góc EAC = góc EDC
d) Tia DE cắt AC tại M, AE cắt DC tại N. Chứng minh MN vuông góc với BC từ đó suy ra MN//AD
e/ Trên tia AB và DE lần lượt lấy điểm I và K sao cho AI=DK. Chứng minh K,H,I thẳng hàng
giúp mik vs ạ mik đang cần gấp
cho tam giác ABC cân tại A. Đường cao AH (H thuộc BC)
a, chứng minh tam giác AHB=tam giác AHC
b, biết AH=4cm; HC=3cm.tính AC
c, trên tia đối của tia HA lấy điểm M sao cho AH =HM . chúng minh AB//CM
d, gọi G là trọng tâm của tam giác ABC , chứng minh ( CG<AB+AC):3