a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường cao
cho tam giác ABC có AB = AC. M là trung điểm BC
a, CMR: tam giác AMB = tam giác ANC
b, Lấy D thuộc AB. Từ d kẻ vuông góc với AM tại K và kéo dài cắt AC tại E. CMR: AD = AE.
c, Trên tia đối của tia ED lấy F sao cho EF = MC. Gọi H là trung điểm EC
CMR: M,H,F thẳng hàng
tam giác ABC. AB = AC, B = C
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
3. Cho tam giác ABC vuông tại A, có BD là tia phân giác. Kẻ DH vuông góc với BC (E thuộc BC). Gọi F là giao điểm của BA và ED. Chứng minh :
a) BD là đường trung trực AE
b) DF=DC
c) AD<DC
4. Cho tam giác ABC vuông tại A, tia phân giác của góc ABC cắt AC tại E. Kẻ EH vuông góc với BC( H thuộc BC). GỌi K là giao điểm của AB và HE. Chứng minh rằng:
a) tam giác ABE = tam giác HBE
b) BE là đường trung trực của đoạn thẳng AH.
c) EK = EC và AE < EC
5. Cho tam giác ABC cân tại A (AB = AC), trung tuyến AM. Gọi D là một điểm nằm giữa A và M.
Chứng minh :
a) AM là tia phân giác góc A
b) tam giác ABD = tam giác ACD
c) tam giác BCD là tam giác cân
6. Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt AC tại D. Từ D kẻ DH vuông góc với BC tại H và DH cắt AB tại K.
a) Chứng minh : AD=DH
b) So sánh độ dài hai cạnh AD và DC
c) Chứng minh tam giác KBC là tam giác cân
1.Cho tam giác ABC vuông tại A. Các tia phân giác của góc B và góc C cắt nhau tại I. Gọi D, E, F là hình chiếu của I xuống AB, AC, BC.
a) Chứng minh rằng AD=AE
b) Tính độ dài các đoạn thẳng AD, AE nếu biết AB = 8cm, AC = 15cm
c) Trong trường hợp tam giác ABC cân tại A, hãy chứng minh rằng tam giác DEF là tam giác cân
2.Cho tam giác ABC có AB<AC. Trên tia đối của tia BC lấy điểm M sao cho BM=BA, trên tia đối của tia CB lấy điểm N sao cho CN=CA
a) Hãy so sánh các góc AMB và ANC
b) Hãy so sánh độ dài các đoạn thẳng AM và AN
c) Gọi H là trung điểm của AM, K là trung điểm của AN. Hai đường thẳng BH và CK cắt nhau tại I. Chứng minh I là trực tâm của tam giác AMN
cho tam giác abc có AB=AC,gọi AM là tia phân giác của góc A(M thuộc BC)
a Chứng minh tam giác AMB = tam giác AMC
b Chứng minh M là trung điểm của cạnh BC và AM ⊥ BC
c Trên tia AM lấy điểm K sao cho MA = MK. Chứng minh AB = CK và AB // CK
cho tam giác ABC cân tại A gọi M là trung điểm của BC;
a)c/m:tam giác ABM=tam giác ACM và AM vuông góc với BC
b)kẻ ME vuông góc với AB tại E,ME vuông góc AC tại F.c/m tam giác EMF cân tại M
c)c/m EF song song BC
c)
Cho tam giác ABC có AB = AC. Gọi M là trung điểm của BC.
Chứng minh rằng:
a) ∆AMB = ∆AMC.
b) AM là tia phân giác của góc BAC.
c) AM ⊥ BC.
d) Vẽ At là tia phân giác của góc ngoài ở đỉnh A của Δ ABC. Chứng minh: At//BC.
Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm E sao cho BE = BA. Tia phân giác của góc B cắt AC ở D.
a) Chứng minh ∆ABD = ∆EBD.
b) Tính số đo góc BED.
c) Chứng minh BD ⊥ AE.
Giúp mình với, mình đag cần gấp :(
Tam giác ABC , góc C bằng 90 độ , AC = 5cm , ab =13cm . a) tính BC và so sánh các góc của tam giác ABC . b) Trên tia đối CA lấy M sao cho CM = CA . chứng minh tam giác AMB cân . c) Gọi H là trung điểm của AB , MB cắt BC tại O , Tính OC . d) Tia AO cắt MB tại N , So sánh AM+HB với MB