a: Xét ΔBAM vuông tại A và ΔCAN vuông tại A có
BA=CA
\(\widehat{B}=\widehat{C}\)
Do đó: ΔBAM=ΔCAN
b: ΔBAM=ΔCAN
=>AM=AN và MB=CN
Ta có: ΔABC cân tại A
=>\(\widehat{ABC}=\widehat{ACB}=\dfrac{180^0-\widehat{BAC}}{2}=\dfrac{180^0-120^0}{2}=30^0\)
Ta có: \(\widehat{CAN}+\widehat{NAB}=\widehat{CAB}\)
=>\(\widehat{NAB}+90^0=120^0\)
=>\(\widehat{NAB}=30^0\)
ta có: \(\widehat{BAM}+\widehat{CAM}=120^0\)
=>\(\widehat{CAM}+90^0=120^0\)
=>\(\widehat{CAM}=30^0\)
Xét ΔNAB có \(\widehat{NAB}=\widehat{NBA}\left(=30^0\right)\)
nên ΔNAB cân tại N
Xét ΔMAC có \(\widehat{MAC}=\widehat{MCA}\left(=30^0\right)\)
nên ΔMAC cân tại M