Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhung Hoàng

Cho tam giác ABC (AB < AC) có ba góc nhọn nội tiếp trong đường tròn tâm O, bán kính R. Gọi H là giao điểm của ba đường cao AD, BE, CF của tam giác ABC.

1. Chứng minh rằng AEHF và AEDB là các tứ giác nội tiếp đường tròn.

2. Vẽ đường kính AK của đường tròn (O). Chứng minh tam giác ABD và tam giác AKC đồng dạng với nhau.

3. Chứng minh rằng OC vuông góc với DE.

IS
21 tháng 4 2020 lúc 9:13

ta có 

\(\widehat{AEH}=90^0;\widehat{AFH}=90^0\)

=> \(\widehat{AEH}+\widehat{AFH}=180^0\)

=> tứ giác AEHF nội tiếp được nhé

ta lại có AEB=ADB=90 độ

=> E , D cùng nhìn cạnh AB dưới 1 góc zuông

=> tứ giác AEDB nội tiếp được nha

b)ta có góc ACK = 90 độ ( góc nội tiếp chắn nửa đường tròn)

hai tam giác zuông ADB zà ACK có

ABD = AKC ( góc nội tiếp chắn cung AC )

=> tam giác ABD ~ tam giác AKC (g.g)

c) zẽ tiếp tuyến xy tại C của (O)

ta có OC \(\perp\) Cx (1)

=> góc ABC = góc DEC

mà góc ABC = góc ACx

nên góc ACx= góc DEC

do đó Cx//DE       ( 2)

từ 1 zà 2 suy ra \(OC\perp DE\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
shin_
Xem chi tiết
Lê Anh Vỹ
Xem chi tiết
Tuấn Hoàng
Xem chi tiết
thanh thư xinh gái😘😘
Xem chi tiết
BẢO HAM HỌC
Xem chi tiết
trần minh khôi
Xem chi tiết
Cao Bảo
Xem chi tiết
Mori Ran
Xem chi tiết
Truong minh tuan
Xem chi tiết