1: Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ
nên ADHE là hình chữ nhật
=>DE=AH
=>\(AD\cdot AB+AE\cdot AC=AH^2+AH^2=2\cdot DE^2\)
1: Xét tứ giác ADHE có góc ADH=góc AEH=góc EAD=90 độ
nên ADHE là hình chữ nhật
=>DE=AH
=>\(AD\cdot AB+AE\cdot AC=AH^2+AH^2=2\cdot DE^2\)
Cho tam giác ABC vuông tại A, đường cao AH. BH=9cm , CH=16cm a, Tính AB,AC,AH b, Tính tỉ số lượng giác của góc B c, Gọi D,E lần lượt là hình chiếu vuông góc của H trên AD,AC . CMR AD.AB=AE.AC
Cho tam giác ABC vuông góc tại A, đường cao AH. Gọi D và E thứ tự là hình chiếu của H trên AB và AC. a)Tính AH biết HB = 4cm, HC =9cm. b)Chứng minh rằng: AD.AB = AE.AC c)Gọi I, K lần lượt là trung điểm của BH và CH, Chứng minh rằng tứ giác DEKI là hình thang vuông, tính diện tích của tứ giác DEKI.
Cho tam giác ABC vuông tại A, có AC > AB và đường cao AH. Gọi D, E lần lượt là hình chiếu của H trên AB, AC
a, Chứng minh AD.AB = AE.AC và tam giác ABC đồng dạng với tam giác AED
b, Cho biết BH = 2 cm, HC = 4,5 cm:
i, Tính độ dài đoạn thẳng DE
ii, Tính số đo góc ABC (làm tròn đến độ)
iii, Tính diện tích tam giác ADE
cho tam giác ABC vuông tại A có đường cao AH
a) biết BH=3,6cm, CH=6,4cm. tính độ dài các đoạn thẳng AH, AB, AC, BC và các góc B,C
b) gọi D,E lần lượt là hình chiếu của H trên AB, AC. chứng minh rằng AH2 = AD.AB , từ đó suy ra AD.AB = AE.AC
giải chi tiết giúp mình ạ!!
cho tam giác ABC vuông tại A. AC>AB, đường cao AH. D,E là hình chiếu của H trên AB,AC.a, AD.AB=AE.AC b, Cho BH=2cm, CH=4,5cm. Tính ED, góc ABC=? ( làm tròn đến độ), tính diện tích tam giác ADE
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D,E lần lượt là hình chiếu của H trên AB,AC. Biết AB=4cm, AC=6cm.
a) Chứng minh : AD.AB=AE.AC
b) Tính độ dài AE
c) Kẻ phân giác AI của góc BAC. Tính độ dài HI
d) Đường thẳng vuông góc với DE tại D cắt BC tại M. Chứng minh M là trung điểm của BH
Bài 2 : Cho tam giác ABC vuông ở A. Gỉa sử D là 1 điểm trên cạnh huyền BC và E.F lần lượt là hình chiếu của D lên các cạnh AB, AC. CMR : AE.EB + AF.FC=BD.DC
cho tam giác ABC vuông Tại A ;AC lớn hơn AB . Đường cao AH Gọi D và E lần lượt là hình chiếu cuả H trên AB,AC .a)chứng minh :AD.AB=AE.AC và tam giác ABC đồng dạng với tam giác AED
Cho tam giác ABC vuông tại A, Đường cao AH .Gọi D,E là hình chiếu của H trên cạnh AB,AC
a)Giả sử HB =9cm ;HC=16cm ,Tính AB,AC,DE
b)BD=BH*2
c)BD.CE.BC=AH*3
Cho tam giác ABC vuông tại A, đường cao AH
1) Tính AB, AC, AH khi HB= 4 cm, HC=9 cm.
2) Gọi D, E lần lượt là hình chiếu của H trên AB, AC. Chứng minh rằng DE2 = HB.HC
3) Chứng minh rằng AE.AC=AD.AB
4) Chứng minh rằng BD.BA + AE.AC=AB2
5) Chứng minh rằng Δ AED và Δ ABC đồng dạng
6) Kẻ trung tuyến AM. Chứng minh rằng AM ⊥ DE
cho tam giác ABC vuông ở A, đường cao AH chia cạnh BC thành 2 đoạn là BH và HC có đọ dài lần lượt là 4 va 9cm. Gọi D và E lần lượt là hình chiếu của H trên AB, AC
a, cm AD.AB=AE.AC
b, Gọi M là trung điểm của AC. Kẻ AK vuông góc với BM( Kthuộc BM)
CM \(\frac{1}{AK^2}=\frac{1}{AH^2}+\frac{3}{AC^2}\)