Cho phương trình m . l n 2 ( x + 1 ) - ( x + 2 - m ) l n ( x + 1 ) - x - 2 = 0 (1). Tập hợp tất cả các giá trị của tham số m để phương trình (1) có hai nghiệm phân biệt thoả mãn 0 < x 1 < 2 < 4 < x 2 là khoảng . Khi đó a thuộc khoảng
Gọi a là số thực lớn nhất để bất phương trình x 2 - x + 2 + a ln ( x 2 - x + 1 ) ≥ 0 nghiệm đúng với mọi x. Mệnh đề nào sau đây đúng?
A. .
B. .
C. .
D. .
Cho hàm số y = f(x) liên tục trên ℝ và có đồ thị như hình bên. Tập hợp tất cả các giá trị thực của tham số m để phương trình f ( e x ) = m có nghiệm thuộc khoảng (0; ln 3) là:
A. (1;3)
B. - 1 3 ; 0
C. - 1 3 ; 1
D. - 1 3 ; 1
Có bao nhiêu số nguyên a ∈ ( - 200 ; 200 ) để phương trình e x + e x + a = ln ( 1 + x ) - ln ( x + a + 1 ) có nghiệm thực duy nhất.
A. 399
B. 199
C. 200
D. 398
Cho hàm số y = f ( x ) = ln ( 1 + x 2 + x ) .
Tập nghiệm của bất phương trình
f ( a - 1 ) + f ( ln a ) ≤ 0 là:
Số nghiệm của phương trình ln x + ln(3x – 2) = 0 là?
A. 1.
B. 3.
C. 0.
D. 2.
Gọi S = (a; b) là tập tất cả các giá trị của tham số thực m để phương trình
log 2 ( m x - 6 x 3 ) + log 1 2 ( - 14 x 2 + 29 x - 2 ) = 0 có 3 nghiệm phân biệt. Khi đó hiệu H = b-a bằng
A. 5 2
B. 1 2
C. 2 3
D. 5 3
Bất phương trình ln(2x2 + 3) > ln(x2 + ax + 1) nghiệm đúng với mọi số thực x khi:
A. - 2 2 < a < 2 2
B. 0 < a < 2 2
C. 0 < a < 2
D. - 2 < a < 2
Gọi A là tập tất cả các giá trị thực của tham số m sao cho tập nghiệm của phương trình x.2x = x(x - m +1) + m(2x - 1) có hai phần tử.Tìm số phần tử của A.
A. 1
B. Vô số
C. 3
D. 2