Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mai Phương Nguyễn

Cho số hực dương a,b,c,d, e khác 0 thỏa mãn\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\)

Chứng minh rằng\(\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\)=\(\dfrac{a}{e}\)

Nguyễn Hoàng Minh
14 tháng 12 2021 lúc 9:56

Đặt \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}=k\Rightarrow a=bk;b=ck;c=dk;d=ek\)

\(\Rightarrow a=bk=ck^2=dk^3=ek^4;b=ek^3\)

\(\Rightarrow\dfrac{a}{e}=\dfrac{ek^4}{e}=k^4\left(1\right)\)

Ta có \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{d}{e}\Rightarrow\dfrac{a^4}{b^4}=\dfrac{b^4}{c^4}=\dfrac{c^4}{d^4}=\dfrac{d^4}{e^4}=\dfrac{2a^4+3b^4+4c^4+5d^4}{2b^4+3c^4+4d^4+5e^4}\left(2\right)\)

Lại có \(\dfrac{a^4}{b^4}=\left(\dfrac{a}{b}\right)^4=\left(\dfrac{ek^4}{ek^3}\right)^4=k^4\left(3\right)\)

\(\left(1\right)\left(2\right)\left(3\right)\RightarrowĐpcm\)


Các câu hỏi tương tự
Yoriichi Tsugikuni
Xem chi tiết
The darksied
Xem chi tiết
FA là tao
Xem chi tiết
Trần Ngọc Linh
Xem chi tiết
Vũ Quang Minh
Xem chi tiết
Phan Hữu Bảo Linh
Xem chi tiết
Xem chi tiết
Moon
Xem chi tiết
Trần Ngọc Linh
Xem chi tiết