Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Thảo Trần

Cho S=5+\(5^2+5^3+...+5^{2004}\). Chứng minh rằng S chia hết cho 126 và 65,

Nguyễn Thế Bảo
23 tháng 4 2016 lúc 17:49

Bạn xem lời giải của mình nhé:

Giải:

a) Có: 5 + 52 + 53 + 54 + 55 + 56 = 5(1 + 53) + 52(1 + 53) + 53(1 + 53
= 5. 126 + 52.126 + 53.126
=> 5 + 52 + 53 + 54 + 55 + 56 chia hết cho 126.

S = (5 + 52 + 53 + 54 + 55 + 56) + 56(5 + 52 + 53 + 54 + 55 + 56) + … + 51998(5 + 52 + 53 + 54 + 55 + 56).
Tổng trên có (2004: 6 =) 334 số hạng chia hết cho 126 nên nó chia hết cho 126.

b) Có: 5 + 52 + 53 + 54 = 5+ 53 + 5(5 + 53) = 130 + 5. 130.
=> 5 + 52 + 53 + 54 chia hết cho 130

S = 5 + 52 + 53 + 54 + 54(5 + 52 + 53 + 54 ) + … + 52000(5 + 52 + 53 + 54 )
Tổng trên có (2004: 4 =) 501 số hạng chia hết cho 130 nên nó chia hết cho 130.

Có S chia hết cho 130 nên chia hết cho 65.

Chúc bạn học tốt!hihi

Phạm Nguyễn Tất Đạt
23 tháng 4 2016 lúc 17:36

S=5+5^2+5^3+...+5^2004

S=(5+5^4)+(5^2+5^5)+...+(5^2001+5^2004)(có 1007 nhóm)

S=5*(1+5^3)+5^2*(1+5^3)+...+5^2001*(1+5^3)

S=5*126+5^2*126+...+5^2001*126

S=126*(5+5^2+...+5^2001) luôn luôn chia hết cho 126

S=(5+5^3)+(5^2+5^4)+...+(5^2002+5^2004)

S=130+5*(5+5^3)+...+5^2001*(5+5^3)

S=130+5*130+...+5^2001*130

S=130*(1+5+...+5^2001)

S=65*2*(1+5+...+5^2001) luôn luôn chia hết cho 65


Các câu hỏi tương tự
Đậu Lê Mai Anh
Xem chi tiết
Trần Minh Hưng
Xem chi tiết
cong chua gia bang
Xem chi tiết
Nguyễn Ngọc Huyền
Xem chi tiết
cong chua gia bang
Xem chi tiết
Kiều Thái Bảo
Xem chi tiết
Hà Anh Nguyễn
Xem chi tiết
Nguyễn Ngọc Quý
Xem chi tiết
NhungNguyễn Trang
Xem chi tiết