Ta có \(\dfrac{6}{15}>\dfrac{6}{16}>...>\dfrac{6}{19}\) nên \(S< \dfrac{6}{15}.5=2\).
Lại có \(S>\dfrac{6}{19}.5>1\) nên \(1< S< 2\)
Ta có \(\dfrac{6}{15}>\dfrac{6}{16}>...>\dfrac{6}{19}\) nên \(S< \dfrac{6}{15}.5=2\).
Lại có \(S>\dfrac{6}{19}.5>1\) nên \(1< S< 2\)
Chứng minh:
\(\dfrac{1}{5}+\dfrac{1}{6}+\dfrac{1}{7}+...+\dfrac{1}{17}+\dfrac{1}{18}+\dfrac{1}{19}< 2\)
Cho biểu thức S=\(\dfrac{1}{1}+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{63}\)
Chứng minh rằng 3<S<6
\(S=\dfrac{1}{2^2}+\dfrac{1}{4^2}+\dfrac{1}{6^2}+...+\dfrac{1}{100^2}\) Chứng minh rằng \(S< \dfrac{1}{2}\)
Tính hợp lý:
\(a.\dfrac{3}{17}+\dfrac{-5}{13}+\dfrac{-18}{35}+\dfrac{14}{17}+\dfrac{17}{-35}+\dfrac{-8}{13}\)
\(b.\dfrac{-3}{8}\cdot\dfrac{1}{6}+\dfrac{3}{-8}\cdot\dfrac{5}{6}+\dfrac{-10}{16}\)
\(c.\dfrac{-4}{11}\cdot\dfrac{5}{15}\cdot\dfrac{11}{-4}\)
Bài 3:
c) Chứng tỏ rằng \(\dfrac{1}{15}+\dfrac{1}{16}+\dfrac{1}{17}+...+\dfrac{1}{43}+\dfrac{1}{44}>\dfrac{5}{6}\)
Giúp mik vs! Thanks nhiều nha!
Bài 1:
a, Tính \(\dfrac{5.4^{15}.9^{9} - 4.3^{20}.8^{9}}{5.2^{9}.6^{19}-7.2^{29}.27^{6}}\)
b,Tìm x biết:
\(1\dfrac{1}{30}:(24\dfrac{1}{6}-24\dfrac{1}{5}) -\dfrac{1\dfrac{1}{2}-\dfrac{3}{4}}{4x-\dfrac{1}{2}}=(-1\dfrac{1}{15}):(8\dfrac{1}{5}-8\dfrac{1}{3})\)
Bài 2: Chứng minh số:
222...22200333...333(2001c/s 2; 2003 c/s3)
f\(\dfrac{-2}{17}+\dfrac{15}{23}+\dfrac{-15}{17}+\dfrac{4}{19}+\dfrac{8}{23}\)
g \(\dfrac{-1}{2}+\dfrac{3}{21}+\dfrac{-2}{6}+\dfrac{-5}{30}\)
a)chứng minh rằng :\(\dfrac{1}{3^2}\)+\(\dfrac{1}{4^2}\)+\(\dfrac{1}{5^2}\)+\(\dfrac{1}{6^2}\)........+\(\dfrac{1}{100^2}< \dfrac{1}{2}\)
b)tính nhanh tổng S với S= \(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+......+\dfrac{1}{61.63}\)
các cao nhân gải giúp với ạ !!! iem đang cần gấp
chứng minh rằng \(S=\dfrac{1}{4^2}+\dfrac{1}{6^2}+\dfrac{1}{8^2}+...+\dfrac{1}{\left(2n\right)^2}< \dfrac{1}{4}\left(n\in N,n\ge2\right)\)