Pt hoành độ giao điểm: \(x^2=5x-m+2\)
\(\Leftrightarrow x^2-5x+m-2=0\)
\(\Delta=25-4\left(m-2\right)>0\Rightarrow m< \dfrac{33}{4}\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=m-2\end{matrix}\right.\)
Mặt khác ta có: \(\left\{{}\begin{matrix}y_1=x_1^2=5x_1-m+2\\y_2=x_2^2=5x_2-m+2\end{matrix}\right.\)
Do đó:
\(y_1+y_2+y_1y_2=25\)
\(\Leftrightarrow5x_1-m+2+5x_2-m+2+x_1^2x_2^2=25\)
\(\Leftrightarrow5\left(x_1+x_2\right)-2m-21+\left(x_1x_2\right)^2=0\)
\(\Leftrightarrow25-2m-21+\left(m-2\right)^2=0\)
\(\Leftrightarrow m^2-6m+8=0\Rightarrow\left[{}\begin{matrix}m=2\\m=4\end{matrix}\right.\) (thỏa mãn)