Ớ Minh Hải lấy chồng không mời bạn à? #PhạmChâureal không có kiểu xưng hô ấy nhé. Lần sau giả danh người khác cũng nên tìm hiểu kĩ người ta ăn nói thế nào chứ đừng linh tinh gây sock thế <3
Ớ Minh Hải lấy chồng không mời bạn à? #PhạmChâureal không có kiểu xưng hô ấy nhé. Lần sau giả danh người khác cũng nên tìm hiểu kĩ người ta ăn nói thế nào chứ đừng linh tinh gây sock thế <3
Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\). Tính \(C=\left(\frac{x^2+y^2}{x^2y^2}-z^2\right)\left(\frac{y^2+z^2}{y^2z^2}-x^2\right)\left(\frac{z^2+x^2}{z^2x^2}-y^2\right)\)
Cho x,y,z > 0 và x^2 + y^2 + z^2 = 3. Tìm min của:
\(P=\dfrac{x^3}{x+y}+\dfrac{y^3}{y+z}+\dfrac{z^3}{z+x} \)
\(Q=\dfrac{x^3+y^3}{x+2y}+\dfrac{y^3+z^3}{y+2z}+\dfrac{z^3+x^3}{z+2x}\)
CMR: Nếu (x-y)^2+(y-z)^2+(z-x)^2=(y+z-2x)^2 + (z+x-2y)^2 + (x+y -2z)^2 thì x=y=z
Cho x + y + z khác 0 ; x = y + z . Chứng minh rằng :
\(\frac{\left(xy+yz+zx\right)^2-\left(x^2y^2+y^2z^2+z^2x^2\right)}{x^2+y^2+z^2}:\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2}=yz\)
cho x>=y>=z>0.chứng minh \(\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}>=x^2+y^2+z^2\)
cho x>=y>=z>0. chứng minh \(\frac{x^2y}{z}+\frac{y^2z}{x}+\frac{z^2x}{y}>=x^2+y^2+z^2\)
CMR (x-y)^2+(y-z)^2+(z-x)^2=(x-z-2x)^2+(z+x-2y)^2+(x+y-2z)^2 thì x=y=z
Cho x,y,z dương thoả xyz=1.chứng minh x^2y^2/(2x^2+y^2+3x^2y^2) + y^2z^2/(2y^2+z^2+3y^2z^2) + z^2x^2/2z^2+x^2+3z^2x^2 <= 1/2
help
chứng minh từ đẳng thức (x-y)^2+(y-z)^2+ (z+x)^2= (x+y-2z)^2+ (y+z-2x)^2 + (z+x-2y) ta suy ra x=y=z