Sửa đề: \(\frac{x_2-1}{2x_2}+\frac{x_1-1}{2x_1}=-3\)
\(\Delta=4^2-4\left(m+1\right)=16-4m-4\)
=-4m+12
Để phương trình có hai nghiệm thì Δ>=0
=>-4m+12>=0
=>-4m>=-12
=>m<=3
Theo Vi-et, ta có: \(\begin{cases}x_1+x_2=-\frac{b}{a}=-4\\ x_1x_2=\frac{c}{a}=m+1\end{cases}\)
Ta có: \(\frac{x_2-1}{2x_2}+\frac{x_1-1}{2x_1}=-3\)
=>\(\frac{x_1\left(x_2-1\right)+x_2\left(x_1-1\right)}{2x_1x_2}=-3\)
=>\(-6\cdot x_1x_2=2x_1x_2-\left(x_1+x_2\right)\)
=>\(-8\cdot x_1x_2=-\left(x_1+x_2\right)\)
=>\(8x_1x_2=x_1+x_2\)
=>8(m+1)=-4
=>m+1=-1/2
=>m=-3/2(nhận)