cho pt x^2-(2m+1)x+m^2-m=0 tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn \(\sqrt{2x_1}\)+1=\(x_2\)
giải cái căn 2x1+1=x2 giúp e với
cho pt x^2-(2m+1)x+m^2-m=0 tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn \(\sqrt{2x_1}\)+1=\(x_2\)
Cho pt ẩn x : x2 - 5x + m - 2 = 0 (1)
a) Giải pt (1) khi m = -4
b) Tìm m để pt có 2 nghiệm dương phân biệt x1 , x2 thoả mãn hệ thức:
\(2\left(\dfrac{1}{\sqrt{x_1}}+\dfrac{1}{\sqrt{x_2}}\right)=3\)
cho phương trình x2-2(m-1)x-3=0
tìm m để pt trên có 2 nghiệm phân biệt x1 , x2 thỏa mãn\(\dfrac{x_1}{x_2^2}+\dfrac{x_2}{x_1^2}=m-1\)
Cho PT \(x^4+\left(1-m\right)x^2+2m-2=0\left(1\right)\)
Tìm $m$ để PT có 4 nghiệm phân biệt $x_1,x_2,x_3,x_4$ sao cho
\(\dfrac{x_1x_2x_3}{2x_4}+\dfrac{x_1x_2x_4}{2x_3}+\dfrac{x_1x_3x_4}{2x_2}+\dfrac{x_2x_3x_4}{2x_1}=2017\)
9.1
cho `x^2 -2(m+1)x-m^2 -3=0`
tìm m để pt có 2 nghiệm pb thỏa mãn \(\left(x_1+x_2-6\right)^2\left(x_2-2x_1\right)=\left(x_1x_2+7\right)^2\left(x_1-2x_2\right)\)
bài 10:
Cho pt x2+5x+m-2=0
Tìm m để pt có 2 nghiệm pb thỏa mãn \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}=2\)
Cho pt : \(x^2-2\left(m-1\right)x-2m+1=0\) .
Tìm m để pt có 2 nghiệm \(x_1,x_2\) phân biệt thỏa mãn \(2x_1-x_2=2\)
Cho pt \(x^2-2(m-4)x-m^2+4=0\)
Tìm tất cả các giá trị của m để pt có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{4}{x_1x_2}=1\)