Dễ chứng minh được phương trình có hai nghiệm phân biệt.
Theo định lí Vi-ét: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=4\\x_1x_2=\dfrac{c}{a}=3\end{matrix}\right.\).
Ta có: \(A=\dfrac{5x_1-x_2}{x_1}+\dfrac{x_1-5x_2}{x_2}\)
\(=5-5+\dfrac{x_1}{x_2}-\dfrac{x_2}{x_1}\)
\(=\dfrac{x_1^2-x_2^2}{x_1x_2}=\dfrac{\left(x_1+x_2\right)\left(x_1-x_2\right)}{x_1x_2}\) (*).
\(=\dfrac{\left(x_1+x_2\right)\sqrt{\left(x_1-x_2\right)^2}}{x_1x_2}\)
\(=\dfrac{\left(x_1+x_2\right)\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}}{x_1x_2}\)
Từ (*), suy ra: \(A=\pm\dfrac{4\sqrt{4^2-4\cdot3}}{3}=\pm\dfrac{8}{3}\)