cho đường thẳng (d) y=6x-m+3 (m là tham số) và parabol (p) y=x^2 tìm giá trị của m để đường thẳng (d) cắt parabol (p) tại hai điểm phân biệt có hoành độ x1 x2 thỏa mãn (x1-1)(x2^2-5x2+m-4)=2
B1:\(\left(x+1\right)^4-3\left(x+1\right)^2-4=0\)
B2: Tìm giá trị của m để đường thẳng (d): y=mx-1 cắt (P): y=\(\dfrac{-2}{3}x^2\) tại hai điểm phân biệt có hoành độ x1,x2 thỏa mãn x1+x2=-5
Cho (P) : y = x2 và đường thẳng (d) : y = 2mx - m + 1 với m là tham số
a) Tìm m để (P) tiếp xúc (d) tại 1 điểm
b) Gọi x1,x2 lần lượt là hoành độ giao điểm của (P) và (d). Tìm m thỏa mãn x12 x2 + mx2 = x2
Trong mặt phẳng tọa độ cho đường thẳng và parabol
b)Tìm m để đường thẳng d cắt p tại 2 điểm có hoành độ x1,x2 thoả mãn:
2y1+4mx2-2x^2-3<0
Cho (P):y=`x^2`, (d):y=`2mx-m^2 +4` (m tham số)
Chứng tỏ (d) luôn cắt (P) tại 2 điểm phân biệt A và B với mọi m. Gọi x1 và x2 lần lượt là hoành độ giao điểm A, B của (d) và (P). Tìm giá trị của m để x1 và x2 thỏa mãn \(x_1^2-3x_1+x_2^2-3x^2=4\)
cho parabol (P): y=x^2 và đường thẳng (d): y =3x-2m +1 tìm giá trị của m để (P) và (d) cắt nhau tại hai điển phân biệt có hoành độ giao điểm là x1;x2 thỏa mãn \(|x_1|=2|x_2|\)
Cho (P) :y=x^2 và (d) :y=2mx-2m+1
a)CM:(d) và (p) luôn có điểm chung .Từ đó tìm tọa độ giao điểm của (d) và (p) khi m=2
b)Tìm m để( d) cắt( p) tại 2 điểm phân biệt có hoành độ x1,x2 thỏa mãn (x1)^2=x2-4
Cho parabol (P): y = x2 và đường thẳng (d): y = 2mx + 3. Gọi x1; x2 là hoành độ giao điểm của (d) và (P). Tìm m để |x1| + 3|x2| = 6
Cho phương trình d: y = (m + 1)x - m ( m là tham số) và Parabol (P): y = 1/2 x2
1) Tìm m để đường thẳng d cắt trục hoành tại điểm có hoành độ bằng 2.
2) Tìm m để đường thẳng d cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn căn x1 + căn x2 = căn 2