\(\Delta'=m^2-\left(m^2-1\right)=1>0\forall m\)
Áp dụng định lý Vi-et: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-1\end{matrix}\right.\)
Ta có: \(\dfrac{2}{x_1x_2}+\dfrac{1}{x_1}+\dfrac{1}{x_2}=1\)
\(\Leftrightarrow\dfrac{2}{x_1x_2}+\dfrac{x_1+x_2}{x_1x_2}=1\)
\(\Leftrightarrow\dfrac{2+x_1+x_2}{x_1x_2}=1\)
\(\Leftrightarrow\dfrac{2+2m}{m^2-1}=1\) \(\Leftrightarrow2+2m=m^2-1\) (vì \(m^2-1\ne0\forall m\))
\(\Leftrightarrow m^2-2m-3=0\Leftrightarrow\left[{}\begin{matrix}m=3\\m=-1\end{matrix}\right.\)