Δ=(-m)^2-4(2m-5)
=m^2-8m+20
=(m-4)^2+4>=4>0
=>Phương trình luôn có hai nghiệm phân biệt
x1+x2=3x1x2
=>m=3(2m-5)
=>6m-15-m=0
=>5m-15=0
=>m=3
Δ=(-m)^2-4(2m-5)
=m^2-8m+20
=(m-4)^2+4>=4>0
=>Phương trình luôn có hai nghiệm phân biệt
x1+x2=3x1x2
=>m=3(2m-5)
=>6m-15-m=0
=>5m-15=0
=>m=3
Cho phương trình: x2 – (2m+1)x + m2 + m -2 = 0 (1) (m là tham số). Tìm m để phương trình (1) có 2 nghiệm phân biệt x1, x2 thoả mãn:
x1(x1 -2x2) + x2(x2 -3x1) = 9
Cho phương trình x2 – 2(m - 2)x – 2m = 0 (m là tham số).
Tìm giá trị của m để phương trình đã cho có hai nghiệm x1; x2 thỏa mãn
x2 – x1 = x12
Cho phương trình x 2 − ( 2 m + 5 ) x + 2 m + 1 = 0 (1), với x là ẩn, m là tham số.
a. Giải phương trình (1) khi m= - 1 2
b. Tìm các giá trị của m để phương trình (1) có hai nghiệm dương phân biệt x 1 , x 2 sao cho biểu thức P = x 1 − x 2 đạt giá trị nhỏ nhất.
Cho phương trình: x2-2(m-1)x-2m=0 với m là tham số.Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 thỏa mãn x12+x1-x2=5-2m.
Cho phương trình x 2 − 2 m + 1 x + m − 1 = 0 (m là tham số). Tìm m để phương trình có hai nghiệm phân biệt x 1 , x 2 thỏa mãn 3 x 1 + x 2 = 0 .
Cho phương trình x2 - (m +1)x +2m -8 =0 (1), m là tham số.
a) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn x12 + x22 + ( x1 - 2)(x2 -2) =11
Cho phương trình x2 -2(m-2) +2m -5 =0 với m là tham số
a) Chứng minh rằng phương trình có nghiệm với mọi giá trị của m
b) Tìm m để phương trình có 2 nghiệm x1 , x2 thỏa mãn x1 - 3x2 = m
Cho phương trình x 2 + 2 m − 1 x + 1 − 2 m = 0 (với m là tham số).
a) Giải phương trình với m= 2.
b) Chứng minh rằng phương trình luôn có nghiệm ∀ m .
c) Tìm các giá trị của m để phương trình có hai nghiệm x 1 ; x 2 thỏa mãn x 1 2 . x 2 + x 1 . x 2 2 = 2 x 1 . x 2 + 3 .
Cho phương trình x^2-2*(m-1)+2 *m-5=0 , với m là tham số Gọi x1 x2 là 2 nghiệm của phương trình trên , tìm tất cả cá giá trị nghuyên dương của m để biểu thức B= (x1/x2)^2+(x2/x1)^2 nhận giá trị nguyên