Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Minh Thư

Cho phương trình \(x^2-\left(2m+3\right)x+m=\)0 ( x là ẩn số , m là tham số)

Chúng minh phương trình có 2 nghiệm phân biệt x1,x2 với mọi m. Tìm giá trị nhỏ nhất của biểu thức \(K=x^{2_1}+x^2_2\)

Xét phương trình : \(x^2-\left(2m+3\right)x+m=0\)

Ta có : \(\Delta=\left[-\left(2m+3\right)\right]^2-4.1.m\)

\(=4m^2+12m+9-4m=4m^2+8m+9\)

\(=\left(2m+2\right)^2+5\)

Có : \(\left(2m+2\right)\ge0\forall m\Rightarrow\left(2m+2\right)^2+5>0\)

\(\Rightarrow\)phương trình luôn có hai nghiệm phân biệt \(x_1\)\(x_2\)

Theo hệ thức VI-ÉT ta có :

\(\hept{\begin{cases}x_1+x_2=2m+3\\x_1.x_2=m\end{cases}\left(^∗\right)}\)

Có : \(K=x^2_1+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2\)

Thay \(\left(^∗\right)\)vào K ta được :

\(K=\left(2m+3\right)^2-2m\)

\(\Leftrightarrow K=4m^2+12m+9-2m\)

\(\Leftrightarrow K=4m^2+10m+9\)

\(\Leftrightarrow K=\left(2m+\frac{5}{2}\right)^2+\frac{11}{4}\ge\frac{11}{4}\)

Vậy \(K_{min}=\frac{11}{4}\) đạt đc khi \(2m+\frac{5}{2}=0\Leftrightarrow m=-\frac{5}{4}\)


Các câu hỏi tương tự
Quan hiếu
Xem chi tiết
Pham Trong Bach
Xem chi tiết
thư thư
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
Nguyên
Xem chi tiết
....
Xem chi tiết
ToiKO7
Xem chi tiết