PT có 2 nghiệm phân biệt:
\(\Delta^'\)> 0
<=> (a - 1)2 - 3(2a - 5)2 > 0
<=> a2 - 2a + 1 - 3(4a2 - 20a + 25) > 0
<=> a2 - 2a + 1 - 12a2 + 60a - 75 > 0
<=> -11a2 + 58a - 74 > 0
<=> \(\frac{-29+\sqrt{27}}{-11}\)< a < \(\frac{-29-\sqrt{27}}{-11}\)
PT có 2 nghiệm phân biệt:
\(\Delta^'\)> 0
<=> (a - 1)2 - 3(2a - 5)2 > 0
<=> a2 - 2a + 1 - 3(4a2 - 20a + 25) > 0
<=> a2 - 2a + 1 - 12a2 + 60a - 75 > 0
<=> -11a2 + 58a - 74 > 0
<=> \(\frac{-29+\sqrt{27}}{-11}\)< a < \(\frac{-29-\sqrt{27}}{-11}\)
Cho phương trình x^2-3x-m+4=0
a) giải phương trình với m=6
b) tìm m để phương trình có nghiệm
C) tìm m để phương trình có hai nghiệm phân biệt x2,x2 biết x1+2x2=5
cho phương trình :(m-1)x^2+2x+1=0
- giải phương trình với m =-1
-tìm m để phương trình có 2 nghiệm phân biệt x1=2x2
giải phương trình khi a=1
\({x^6-1\over x^3} - (2a+1){x^2-1\over x} +2a-3 =0\)
và tìm a để phương trình có nhiều hơn 2 nghiệm dương phân biệt
a) Tìm các giá trị của m để phương trình 2x2-(4m+3)x+2m-1=0 có 2 nghiệm phân biệt.
b) Tính tổng và tích 2 nghiệm theo m.
Cho phương trình \(x^2-2x+m=0\)
a) tìm m để phương trình có nghiệm là 3? Tìm nghiệm còn lại
b) Tìm m để phương trình có nghiệm kép?
c) Tìm m để phương trình có 2 nghiệm phân biệt?
Cho phương trình \(x^3+\left(1+m\right)x-m^2=0\)
1) Tìm m để phương trình có đúng 1 nghiệm
2) Tìm m để PT có 2 nghiệm
3) Tìm m để phương trình có 3 nghiệm
4) Tìm m để phương trình có 3 nghiệm dương phân biệt
5) Tìm m để phương trình có 2 nghiệm âm phân biệt
Cho phương trình: x2 - 5x + m - 1 = 0 (*). Tìm m để phương trình (*) có 2 nghiệm phân biệt x1;x2 sao cho: 2x2 = \(\sqrt{x_1}\)
Cho phương trình x^2-(m+2)x+m+1=0(1)(x là ẩn, m là tham số Tìm m để phương trình (1) có 2 nghiệm phân biệt x1,x2 thỏa mãn x1^2—2x2=7
cho phương trình x2 -(m+1)x +m+2=0
a) tìm m để phương trình vô nghiệm ? có nghiệm kép? có nghiệm? có 2 nghiệm phân biệt?
b) tìm m để phương trình có 2 nghiệm trái dấu
c) tìm m để phương trình có 2 nghiệm dương phân biệt
d) tìm m để phương trình có ít nhất một nghiệm dương