`a,`
\(x^2-3x\ne0\)
`<=>x(x-3)`\(\ne0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x-3\ne0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne3\end{matrix}\right.\)
`b,`
đặt `A=(x^2-6x+9)/(x^2-3x)`
`A= ((x-3)^2)/(x(x-3))`
`A= (x-3)/x`
`c, `
để `x=5`
`=> A= (x -3)/x=(5-3)/5= 2/5`
a/ ĐKXĐ: \(x^2-3x\ne0\) \(\Leftrightarrow\) x\(\ne\)0,x\(\ne\)3
b/ \(\dfrac{x^2-6x+9}{x^2-3x}=\dfrac{\left(x-3\right)^2}{x\left(x-3\right)}=\dfrac{x-3}{x}\)
c/ x= 5 => \(\dfrac{x-3}{x}=\dfrac{5-3}{5}=\dfrac{2}{5}\)